Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 622(7982): 268-272, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821591

ABSTRACT

The ability to perform entangling quantum operations with low error rates in a scalable fashion is a central element of useful quantum information processing1. Neutral-atom arrays have recently emerged as a promising quantum computing platform, featuring coherent control over hundreds of qubits2,3 and any-to-any gate connectivity in a flexible, dynamically reconfigurable architecture4. The main outstanding challenge has been to reduce errors in entangling operations mediated through Rydberg interactions5. Here we report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel, surpassing the surface-code threshold for error correction6,7. Our method uses fast, single-pulse gates based on optimal control8, atomic dark states to reduce scattering9 and improvements to Rydberg excitation and atom cooling. We benchmark fidelity using several methods based on repeated gate applications10,11, characterize the physical error sources and outline future improvements. Finally, we generalize our method to design entangling gates involving a higher number of qubits, which we demonstrate by realizing low-error three-qubit gates12,13. By enabling high-fidelity operation in a scalable, highly connected system, these advances lay the groundwork for large-scale implementation of quantum algorithms14, error-corrected circuits7 and digital simulations15.

2.
Nature ; 604(7906): 451-456, 2022 04.
Article in English | MEDLINE | ID: mdl-35444318

ABSTRACT

The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems1,2. In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation3-5. We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state6,7. Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits8 and a toric code state on a torus with sixteen data and eight ancillary qubits9. Finally, we use this architecture to realize a hybrid analogue-digital evolution2 and use it for measuring entanglement entropy in quantum simulations10-12, experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars13,14. Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology.

3.
Nature ; 595(7866): 227-232, 2021 07.
Article in English | MEDLINE | ID: mdl-34234334

ABSTRACT

Motivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing1, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide insights into strongly correlated quantum matter2-6, while at the same time enabling new methods for computation7-10 and metrology11. Here we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled by coherent atomic excitation into Rydberg states12. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by characterizing high-fidelity antiferromagnetically ordered states and demonstrating quantum critical dynamics consistent with an Ising quantum phase transition in (2 + 1) dimensions13. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation14, experimentally map the phase diagram and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics and hardware-efficient realization of quantum algorithms.

4.
Phys Rev Lett ; 123(17): 170503, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31702233

ABSTRACT

We report the implementation of universal two- and three-qubit entangling gates on neutral-atom qubits encoded in long-lived hyperfine ground states. The gates are mediated by excitation to strongly interacting Rydberg states and are implemented in parallel on several clusters of atoms in a one-dimensional array of optical tweezers. Specifically, we realize the controlled-phase gate, enacted by a novel, fast protocol involving only global coupling of two qubits to Rydberg states. We benchmark this operation by preparing Bell states with fidelity F≥95.0(2)%, and extract gate fidelity ≥97.4(3)%, averaged across five atom pairs. In addition, we report a proof-of-principle implementation of the three-qubit Toffoli gate, in which two control atoms simultaneously constrain the behavior of one target atom. These experiments demonstrate key ingredients for high-fidelity quantum information processing in a scalable neutral-atom platform.

5.
Phys Chem Chem Phys ; 20(7): 4746-4751, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29380828

ABSTRACT

We perform photoassociation spectroscopy in an ultracold 23Na-6Li mixture to study the c3Σ+ excited triplet molecular potential. We observe 50 vibrational states and their substructure to an accuracy of 20 MHz, and provide line strength data from photoassociation loss measurements. An analysis of the vibrational line positions using near-dissociation expansions and a full potential fit is presented. This is the first observation of the c3Σ+ potential, as well as photoassociation in the NaLi system.

6.
Phys Rev Lett ; 110(17): 173203, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679724

ABSTRACT

Collisions of 6Li2 molecules with free 6Li atoms reveal a striking deviation from universal predictions based on long-range van der Waals interactions. Li2 closed-channel molecules are formed in the highest vibrational state near a narrow Feshbach resonance and decay via two-body collisions with Li2, Li, and Na. For Li2 + Li2 and Li2 + Na, the decay rates agree with the universal predictions of the quantum Langevin model. In contrast, the rate for Li2 + Li is exceptionally small, with an upper bound 10 times smaller than the universal prediction. This can be explained by the low density of available decay states in systems of light atoms [G. Quéméner, J.-M. Launay, and P. Honvault, Phys. Rev. A 75, 050701 (2007)], for which such collisions have not been studied before.

SELECTION OF CITATIONS
SEARCH DETAIL
...