Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 27(28): 34596-34605, 2020 Oct.
Article in English | MEDLINE | ID: mdl-30746626

ABSTRACT

This study evaluated the use of magnetite (Fe3O4), carbon black (CB), and Fe3O4-CB composites activated by persulfate (PS) at circumneutral pH to oxidize polycyclic aromatic hydrocarbons (PAHs) in marine sediments. In addition, the in vitro cytotoxic activity and apoptotic response of the obtained degradation products were investigated. Chemical analyses showed that the total PAH concentration was 26,263 ng/g for sediment samples from an industrial port area. Highly toxic BaP was the main contributor to the TEQ in sediments. Source analyses demonstrated that the PAHs in the sediment were derived from coal combustion. In this study, we found that the PS oxidation processes effectively degrade PAHs at concentration levels of 1.7 × 10-5 M at pH 6.0. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was employed to assess the cytotoxicity of the PAH degradation products before and after Fe3O4/PS, CB/PS, and Fe3O4-CB/PS oxidation treatment using a human hepatoma carcinoma cell line (HepG2) and a zebrafish (Danio rerio) embryonic cell line (ZF4). Each sample extract showed a marked dose-related response, with the cell viability reduced by 82% in the case of HepG2 and 58% in the case of ZF4 at 100 µg/mL after the Fe3O4-CB/PS process. The PAH degradation products had different effects on the cell morphologies of the two cell lines. The results suggested that the ZF4 cell model is more sensitive than HepG2 to the toxicity of the PAH samples.


Subject(s)
Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Cell Line , Geologic Sediments , Humans , Oxidation-Reduction
2.
Phys Chem Chem Phys ; 18(42): 29300-29307, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27731868

ABSTRACT

Passivation of surface states is known to reduce the onset photocurrent potential by removing the Fermi level pinning effect at the Helmholtz layer and enhance the photocurrent plateau by suppressing recombination loss in the space charge region. We report for the first time that metal ions can effectively passivate surface states in situ that improves the photoelectrochemical (PEC) performance of hematite electrodes. Among metal ions studied, Cr(iii), Mn(ii), Fe(ii), Co(ii), Cu(ii) and Zn(ii) were found to enhance the photocurrent by 30-300%; whereas photocurrent density significantly dropped by 90% in Ni(ii) solution after 90 min of illumination. We further hypothesized that the surface states might be the high affinity adsorption sites on hematite surfaces. Once the surface states are occupied by metal ions, along with the Schottky barrier effect at the hematite/electrolyte interface formed by adsorbed metal ions, the PEC performance is enhanced. Our results also enable the design of a potential PEC based water treatment method to extract additional energy, for example, in the brines (containing concentrated metal ions and electrolyte) of membrane processed wastewater.

3.
J Radioanal Nucl Chem ; 300(1): 393-407, 2014.
Article in English | MEDLINE | ID: mdl-26224970

ABSTRACT

Diffusion is a dominant mechanism regulating the transport of released nuclides. The through-diffusion method is typically applied to determine the diffusion coefficients (D). Depending on the design of the experiment, the concentrations in the source term [i.e., inlet reservoir (IR)] or the end term [i.e., outlet reservoir (OR)] can be fixed or vary. The combinations involve four distinct models (i.e., the CC-CC model, CC-VC model, VC-CC model, and the VC-VC model). Studies discussing the VC-CC model are scant. An analytical method considering the decay effect is required to accurately interpret the radioactive nuclide diffusion experiment results. Therefore, we developed a CC-CC model and a CC-VC model with a decay effect and the simplified formulas of these two models to determine the diffusion coefficient (i.e., the CC-CC method and CC-VC method). We also proposed two simplified methods using the VC-VC model to determine the diffusion coefficient straightforwardly based upon the concentration variation in IR and OR. More importantly, the best advantage of proposed method over others is that one can derive three diffusion coefficients based on one run of experiment. In addition, applying our CC-VC method to those data reported from Radiochemica Acta 96:111-117, 2008; and J Contam Hydrol 35:55-65, 1998, derived comparable diffusion coefficient lying in the identical order of magnitude. Furthermore, we proposed a formula to determine the conceptual critical time (Tc), which is particularly beneficial for the selection of using CC-VC or VC-VC method. Based on our proposed method, it becomes possible to calculate diffusion coefficient from a through-diffusion experiment in a shorter period of time.

4.
J Agric Food Chem ; 61(21): 5009-15, 2013 May 29.
Article in English | MEDLINE | ID: mdl-23646931

ABSTRACT

In this study, the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was adopted to determine the distribution of inorganic elements, including Ca, Cu, Fe, Mg, Mn, S, P, Pb, and Zn, in honeybees (Apis melifera L.). Two features are particularly noteworthy. First, it was found there is a significant amount of Fe located at the fringe of the abdomen in worker bees; ultrasonic imaging, scanning electron microscopy, and magnetic resonance imaging revealed that it arose from magnetic Fe-bearing nanoparticles (NPs) having an average diameter of approximately 40 nm. Interestingly, only worker bees contained these magnetic Fe-bearing NPs; no similar features appeared in larvae, pupae, wasps, or drones. Second, a detectable amount of Pb accumulated particularly in the alimentary canals of worker bees. Again, no detectable amounts of Pb in larvae, pupae, drones, or wasps, yet a level of 0.24 ± 0.05 mg/kg of Pb in pollen; therefore, the diet appears to be the primary pathway for environmental pollutants entering the honeybees' food chain.


Subject(s)
Bees/chemistry , Bees/physiology , Environmental Pollutants/analysis , Feeding Behavior , Metals/analysis , Animals , Environmental Pollutants/metabolism , Laser Therapy , Mass Spectrometry , Metals/metabolism
5.
J Contam Hydrol ; 138-139: 1-14, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22771814

ABSTRACT

A valid performance assessment of radioactive waste repositories strongly depends on the reliability of nuclide transport parameters, including distribution and diffusion coefficients. To reduce the waste produced and time spent conducting diffusion experiments, a robust model is required to accurately interpret the experiment results. Therefore, we developed a through-diffusion model with parent-daughter nuclide decay chain. We validated our model through comparisons with the Moridis model (Moridis, 1999) and Bharat model (Bharat et al., 2009), assessing our model and these two models using the distribution of parent nuclide concentrations. This strongly supports the rationality and functionality of extending our proposed model to daughter nuclides. In this study, we derived analytical solutions for the parent nuclides of the through-diffusion experiment using the multicompartment (MC) model. We also propose a simplified formula for estimating the apparent diffusion coefficient of parent nuclides based on the analytical solutions. Through numerical experiments, we verified the feasibility of the formula. Our models are useful for determining the apparent diffusion coefficient of daughter nuclides when conducting through-diffusion experiments with parent-daughter nuclide decay chains. Additionally, the proposed models offer the advantages of saving time and reducing experimental waste.


Subject(s)
Models, Chemical , Radioactive Waste/analysis , Radioactivity , Diffusion
6.
Chem Commun (Camb) ; 48(5): 729-31, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22117192

ABSTRACT

Films of crystalline WO(3) nanosheets oriented perpendicular to tungsten substrates were grown by a surfactant-free hydrothermal method, followed by sintering. The films exhibit photoelectrochemical oxygen evolution at low overpotential.

7.
J Hazard Mater ; 192(3): 1079-87, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21763071

ABSTRACT

A reliable performance assessment of radioactive waste repository depends on better knowledge of interactions between nuclides and geological substances. Numerical fitting of acquired experimental results by the surface complexation model enables us to interpret sorption behavior at molecular scale and thus to build a solid basis for simulation study. A lack of consensus on a standard set of assessment criteria (such as determination of sorption site concentration, reaction formula) during numerical fitting, on the other hand, makes lower case comparison between various studies difficult. In this study we explored the sorption of cesium to argillite by conducting experiments under different pH and solid/liquid ratio (s/l) with two specific initial Cs concentrations (100mg/L, 7.5 × 10(-4)mol/L and 0.01 mg/L, 7.5 × 10(-8)mol/L). After this, numerical fitting was performed, focusing on assessment criteria and their consequences. It was found that both ion exchange and electrostatic interactions governed Cs sorption on argillite. At higher initial Cs concentration the Cs sorption showed an increasing dependence on pH as the solid/liquid ratio was lowered. In contrast at trace Cs levels, the Cs sorption was neither s/l dependent nor pH sensitive. It is therefore proposed that ion exchange mechanism dominates Cs sorption when the concentration of surface sorption site exceeds that of Cs, whereas surface complexation is attributed to Cs uptake under alkaline environments. Numerical fitting was conducted using two different strategies to determine concentration of surface sorption sites: the clay model (based on the cation exchange capacity plus surface titration results) and the iron oxide model (where the concentration of sorption sites is proportional to the surface area of argillite). It was found that the clay model led to better fitting than the iron oxide model, which is attributed to more amenable sorption sites (two specific sorption sites along with larger site density) when using clay model. Moreover, increasing s/l ratio would produce more sorption sites, which helps to suppress the impact of heterogeneous surface on Cs sorption behavior under high pH environments.


Subject(s)
Cesium/analysis , Hazardous Waste , Radioactive Waste/analysis , Refuse Disposal/methods , Adsorption , Aluminum Silicates , Chromatography, Ion Exchange/methods , Clay , Ferric Compounds/analysis , Hazardous Substances , Hydrogen-Ion Concentration , Models, Theoretical , Surface Properties , Taiwan
8.
Appl Radiat Isot ; 68(12): 2140-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20656497

ABSTRACT

In this work the desorption of cesium ions from crushed granite in synthetic groundwater (GW) and seawater (SW) was investigated. Results were compared with those obtained in deionized water (DW) and in two kinds of extraction solutions, namely: MgCl(2) and NaOAc (sodium acetate). In general, the desorption rate of Cs from crushed granite increased proportionally with initial Cs loadings. Also, amounts of desorbed Cs ions followed the tendency in the order SW>GW>NaOAc approximately equal MgCl(2)>DW solutions. This indicated that the utilization of extraction reagents for ion exchange will underestimate the Cs desorption behavior. Fitting these experimental data by Langmuir model showed that these extraction reagents have reduced Cs uptake by more than 90%, while only less than 1% of adsorbed Cs ions are still observed in GW and SW solutions in comparison to those in DW. Further SEM/EDS mapping studies clearly demonstrate that these remaining adsorbed Cs ions are at the fracture areas of biotite.


Subject(s)
Cesium/chemistry , Silicon Dioxide , Adsorption , Microscopy, Electron, Scanning , Models, Theoretical , Water
9.
Environ Sci Technol ; 44(13): 5142-7, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20536145

ABSTRACT

Cationic surfactants modified clays exhibit high sorptive capability toward anionic radionuclides but retention of cationic radionuclides was concurrently reduced. In this study, organoclays were synthesized by intercalating a variety of primary/quaternary alkylammonium species (NH(2)R/(CH(3))(3)N(+)RBr(-), where R = benzyl, dodecyl, and octadecyl) into bentonite MX-80. The effect of surfactant's properties on enhancing or limiting cationic sorption capability was investigated by performing Cs sorption experiments. Experimental results were analyzed using the MINEQL+ software by considering Cs uptake by structural and edge sorption sites. Bentonites that were intercalated with primary alkylammonium surfactants had a higher sorptive capacity than those intercalated with quaternary alkylammonium surfactants. Samples intercalated with octadecyl-bearing surfactants had the lowest sorption rate. XRD and FTIR analyses revealed that each organoclay had a characteristic arrangement of alkyl chains. The cation retention of organoclays was dominated by the extent of hydrophobic interactions affected by the local distribution and arrangement of surfactants. The intercalated primary alkylammoniun surfactants tended to transform into local clusters with a high packing density, leaving more structural sites available for Cs uptake. In contrast, the NH(3)R(+)-surfactants tended to form a denser monolayer over clay surface, inhibiting the retention of Cs at structural sites.


Subject(s)
Cesium/chemistry , Organic Chemicals/chemistry , Surface-Active Agents/chemistry , Adsorption , Algorithms , Aluminum Silicates , Cations , Clay , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Models, Theoretical , Software , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
10.
J Hazard Mater ; 173(1-3): 335-42, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19747773

ABSTRACT

In this study, the performance of phosphoric acid activated montmorillonite (PAmmt) was evaluated by cesium ions adsorption experiments. The PAmmt samples were obtained by activating with 1, 3 and 5 mol L(-1) of phosphoric acid, respectively under reflux for 3, 12, and 24h. Experimental results demonstrated that the treatment of raw K-10 montmorillonite with phosphoric acid increased the materials' affinity for Cs uptake and no significant amount of suspension solids were produced. A relatively insignificant variation in the CEC value was observed. Furthermore, PAmmt also showed high adsorption selectivity toward Cs ions. The improved sorptive properties were mainly related to the increased surface area and the relatively higher surface charge density. Increased specific surface area was the resulted from partial decomposition of lamellar structure of mmt; while the higher surface charge density was caused by the protonation of octahedral Al-OH sites during the acid activation. Generally speaking, stronger acid concentration and longer activation times would produce relatively more decomposed PAmmt particles. However, as the activation exceeds 3h, the precipitation of Si(4+) would passivate PAmmt against further acid attacks. Based upon our results, acid activation by phosphoric acid could produce PAmmt samples with high sorption capacity and selectivity, and good structural integrity, which are beneficial to be used at radioactive waste repository.


Subject(s)
Bentonite/chemistry , Phosphoric Acids/chemistry , Radioactive Waste/analysis , Refuse Disposal/methods , Acids , Adsorption , Buffers , Cesium/chemistry , Fluorides/chemistry , Porosity , Spectroscopy, Fourier Transform Infrared , Sulfates/chemistry , Surface Properties , Thermodynamics , X-Ray Diffraction
11.
J Hazard Mater ; 161(1): 409-15, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18479812

ABSTRACT

Both batch and column methods are conventionally utilized to determine some critical parameters for assessing the transport of contaminants of concern. The validity of using these parameters is somewhat confusing, however, since outputs such as distribution coefficient (Kd) from these two approaches are often discrepant. To bridge this gap, all possible factors that might contribute to this discrepancy were thoroughly investigated in this report by a case study of Cs sorption to crushed granite under various conditions. Our results confirm an important finding that solid/liquid (S/L) ratio is the dominant factor responsible for this discrepancy. As long as the S/L ratio exceeds 0.25, a consistent Kd value can be reached by the two methods. Under these conditions (S/L ratios>0.25), the sorption capacity of the solid is about an order of magnitude less than that in low S/L ratios (<0.25). Although low sorption capacity is observed in the cases of high S/L ratios, the sorption usually takes place preferentially on the most favorable (thermodynamically stable) sorption sites to form a stronger binding. This is verified by our desorption experiments in which a linear isotherm feature is shown either in deionized water or in 1M of ammonium acetate solutions. It may be concluded that batch experiment with an S/L ratio exceeding 0.25 is crucial to obtain convincing Kd values for safety assessment of radioactive waste repository.


Subject(s)
Cesium/analysis , Cesium/chemistry , Chemistry Techniques, Analytical/methods , Silicon Dioxide/chemistry , Adsorption , Osmolar Concentration , Water/analysis , Water/chemistry
12.
J Hazard Mater ; 162(1): 530-5, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-18579288

ABSTRACT

This study investigated breakthrough curves (BTCs) from a series of column experiments, including different column lengths and flow rates, of a conservative tracer, tritium oxide (HTO), and a radionuclide, cesium, in crushed granite using a reactive transport model. Results of the short column, with length of 2cm, showed an underestimation of the retardation factor and the corresponding HTO BTCs cannot be successfully modeled even with overestimated fluid dispersivity. Column supporting elements, including filters and rings, on both ends of packed granite were shown to be able to induce additional dispersive mixing, thus significantly affecting BTCs of short columns while those of the long column, with length of 8cm, were less affected. By increasing flow rates from 1mL/min to 5mL/min, the contribution of structural dispersive mixing to the false tilting of short column BTCs still cannot be detached. To reduce the influence of structural dispersivity on BTCs, the equivalent pore volume of column supporting materials should be much smaller than that of packed porous medium. The total length of column supporting structures should be greatly shorter than that of porous medium column.


Subject(s)
Cesium/chemistry , Silicon Dioxide/chemistry , Algorithms , Cesium Radioisotopes/chemistry , Models, Chemical , Polytetrafluoroethylene , Seawater/analysis , Solubility , Tritium/chemistry , Water/chemistry , Water Supply/analysis
13.
J Hazard Mater ; 161(2-3): 854-61, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-18515005

ABSTRACT

The adsorption of cesium onto crushed granite was investigated under different physicochemical conditions including contact time, Cs loading, ionic strength and temperature. In addition, the distribution of adsorbed Cs was examined by X-ray diffraction (XRD) and EDS mapping techniques. The results showed that Cs adsorption to crushed granite behaved as a first-order reaction with nice regression coefficients (R(2) > or = 0.971). Both Freundlich and Langmuir models were applicable to describe the adsorption. The maximum sorption capacity determined by Langmuir model was 80 micromol g(-1) at 25 degrees C and 10 micromol g(-1) at 55 degrees C. The reduced sorption capacity at high temperature was related to the partial enhancement of desorption from granite surface. In general, Cs adsorption was exothermic (DeltaH<0, with median of -12 kJ mol(-1)) and spontaneous (DeltaG<0, with median of -6.1 at 25 degrees C and -5.0 kJ mol(-1) at 55 degrees C). The presence of competing cations such as sodium and potassium ions in synthetic groundwater significantly reduces the Cs adsorption onto granite. The scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM/EDS) mapping method provided substantial evidences that micaceous minerals (biotite in this case) dominate Cs adsorption. These adsorbed Cs ions were notably distributed onto the frayed edges of biotite minerals. More importantly, the locations of these adsorbed Cs were coincided with the potassium depletion area, implying the displacement of K by Cs adsorption. Further XRD patterns displayed a decreased intensity of signal of biotite as the Cs loading increased, revealing that the interlayer space of biotite was affected by Cs adsorption.


Subject(s)
Cesium/chemistry , Silicon Dioxide/chemistry , Adsorption , Aluminum Silicates/chemistry , Chemistry, Physical/methods , Ferrous Compounds/chemistry , Hydrogen-Ion Concentration , Ions , Kinetics , Microscopy, Electron, Scanning/methods , Models, Chemical , Potassium/chemistry , Temperature , Thermodynamics , Water Pollutants, Chemical/chemistry , X-Ray Diffraction
14.
J Hazard Mater ; 160(2-3): 638-42, 2008 Dec 30.
Article in English | MEDLINE | ID: mdl-18448244

ABSTRACT

Utilization of local Taiwan laterite (LTL) to remove aqueous cesium was investigated in this work under the conditions of various contact time, cesium (Cs) loading and temperature. Experimental results show that adsorption is instantaneous. Freundlich and Langmuir simulation results demonstrate that local Taiwan laterite has high affinity and sorption capacity for Cs at low temperatures, which may be attributed to enhanced desorption as temperature increased. Thermodynamic parameters including DeltaH, DeltaG and DeltaS were calculated and it is indicated that Cs adsorption on LTL is an exothermic, spontaneous and physical adsorption reaction. Moreover, the adsorbed Cs is distributed evenly on the LTL surface, which is confirmed by SEM/EDS mapping images. Furthermore, the absence of apparent shifting or broadening of the kaolinite signal in XRD patterns after Cs adsorption is an indication of the non-expanding characteristic of kaolinite structure.


Subject(s)
Cesium/isolation & purification , Construction Materials/analysis , Adsorption , Kinetics , Microscopy, Electron, Scanning , Solutions , Taiwan , Temperature , Thermodynamics , Water , X-Ray Diffraction
15.
Appl Radiat Isot ; 66(9): 1183-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18321721

ABSTRACT

In this work we used an "in-diffusion" method to study the effects of pH, solution concentration and packing density on Cs diffusion by packing local Taiwan laterite (LTL) into modified capillary columns with 5mm diameter. These packed columns were first pre-equilibrated with synthetic groundwater (GW) for 3 weeks. The diffusion experiments were then carried out at ambient condition for 2 weeks. Our experimental results showed that the Cs diffusion profile fits Fick's second law very well in given experimental conditions, indicating the validity of modified capillary column method. Generally speaking, Cs diffusion in LTL decreases as the pH increases and as Cs concentration decreases. The apparent diffusion coefficient (D(a)) increases from 5.52 x 10(-12) (10(-7)M) to 2.18 x 10(-11) (10(-3)M)m(2)/s, while the effective diffusion coefficient (D(e)) shows slight variation as the Cs concentration changes. Both the derived D(a) and D(e) values decrease as the pH increases, implying that the diffusion mechanisms of Cs nuclide in alkaline and acid environment are different. In addition, our results show that Cs diffusion is unaffected by the given packing density, indicating the interlaminary space is not the major determinant of Cs adsorption and diffusion in LTL.


Subject(s)
Cesium/chemistry , Radioactive Waste , Chromatography/methods , Diffusion , Hydrogen-Ion Concentration , Kaolin/chemistry , Soil , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis
16.
Appl Radiat Isot ; 66(1): 14-23, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17905591

ABSTRACT

The adsorption of selenium species on crushed granite is investigated directly linking to its internal iron-related minerals. Experimental results demonstrated that granite has higher affinity toward Se(IV) adsorption than Se(VI) adsorption. Se(IV) adsorption on granite is insensitive to background electrolytes while the effect of ionic strength on Se(VI) adsorption is not observed, which is attributed to the overloading of Se(VI) ions. Results of chemical sequential extraction showed that the removal of crystalline iron oxides dramatically reduces Se(IV) adsorption, which corresponds to the disappearance of goethite signal within XRD pattern. Based on our results, it is proposed that goethite within granite dominates Se adsorption in crushed granite. Although these goethites probably stem from some sample preparation processes including drilling in situ, crushing, washing and drying granite samples in laboratory, the formation of goethite enhances the granite affinity toward Se species adsorption. Images of SEM/EDS furthermore revealed that goethite is embedded within the fractures. In addition, quantification by standard addition method by spiking goethite suspension indicates that only around 20% of goethite minerals are available during Se(IV) adsorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...