Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(21): e2210154, 2023 May.
Article in English | MEDLINE | ID: mdl-36857624

ABSTRACT

Here, low-energy poly(ethylene terephthalate) (PET) chemical recycling in water: PET copolymers with diethyl 2,5-dihydroxyterephthalate (DHTE) undergo selective hydrolysis at DHTE sites, autocatalyzed by neighboring group participation, is demonstrated. Liberated oligomeric subchains further hydrolyze until only small molecules remain. Poly(ethylene terephthalate-stat-2,5-dihydroxyterephthalate) copolymers were synthesized via melt polycondensation and then hydrolyzed in 150-200 °C water with 0-1 wt% ZnCl2 , or alternatively in simulated sea water. Degradation progress follows pseudo-first order kinetics. With increasing DHTE loading, the rate constant increases monotonically while the thermal activation barrier decreases. The depolymerization products are ethylene glycol, terephthalic acid, 2,5-dihydroxyterephthalic acid, and bis(2-hydroxyethyl) terephthalate dimer, which could be used to regenerate virgin polymer. Composition-optimized copolymers show a decrease of nearly 50% in the Arrhenius activation energy, suggesting a 6-order reduction in depolymerization time under ambient conditions compared to that of PET homopolymer. This study provides new insight to the design of polymers for end-of-life while maintaining key properties like service temperature and mechanical properties. Moreover, this chemical recycling procedure is more environmentally friendly compared to traditional approaches since water is the only needed material, which is green, sustainable, and cheap.

2.
ACS Macro Lett ; 9(6): 781-787, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-35648526

ABSTRACT

Here we report microphase-separated poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) as a reinforcing filler in PDMS thermosets that overcomes the long-standing problem of aging in the processing of silica-reinforced silicone. Surprisingly, PS-b-PDMS reinforced composites display comparable mechanical performance to silica-modified analogs, even though the modulus of PS is much smaller than that of silica and there is no evidence of percolation with respect to the rigid PS domains. We have found that a few unique characteristics contribute to the reinforcing performance of PS-b-PDMS. The strong self-assembly behavior promotes batch-to-batch repeatability by having well-dispersed fillers. The structure and size of the fillers depend on the loading and characteristics of both filler and matrix, along with the shear effect. The reinforcing effect of PS-b-PDMS is mostly brought by the entanglements between the corona layer of the filler and the matrix, rather than the hydrodynamic reinforcement of the PS phase.

3.
ACS Appl Mater Interfaces ; 7(33): 18353-61, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26241082

ABSTRACT

Zeolitic imidazolate frameworks (ZIFs) are an emerging class of microporous materials that possess an organic flexible scaffold and zeolite-like topology. The catalytic and molecular-separation capabilities of these materials have attracted considerable attention; however, crystal-shape engineering in ZIF materials remains in its infancy. This is the first study to report an effective method for tailoring the near-spherical crystal morphology of ZIF-8 using its leaf-like pseudopolymorph, ZIF-L. A thin, uniform layer of ZIF-8 is formed on ZIF-L through heterogeneous surface growth to produce a ZIF-L@ZIF-8 core-shell nanocomposite. This results in ZIF-8 with a crystal morphology comprising two-dimensional nanoflakes. We characterized the resulting core-shell crystals using a number of solid-state techniques, including powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and nitrogen physisorption. Approximately 16 mass% of ZIF-8 in the core-shell composites heterogeneous surfacely grown on ZIF-L core crystals. We also investigated the effects of zinc salts, which were used as a source of zinc in the formation of the ZIF-L@ZIF-8 core-shell nanocomposites. Finally, we assessed the CO2 adsorption properties of ZIF-8, ZIF-L, and ZIF-L@ZIF-8 core-shell crystals, the results of which were used to deduce the dynamic and equilibrium adsorption characteristics of various microporous ZIF crystals. The core-shell materials present hybridized CO2 uptake and diffusivity of the parent crystals. The proposed method for the synthesis of core-shell nanocomposites using pseudopolymorphic crystals is applicable to other ZIF systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...