Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Plant Physiol Biochem ; 212: 108794, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38850730

ABSTRACT

With the increasing occurrence of global warming, drought is becoming a major constraint for plant growth and crop yield. Plant cell walls experience continuous changes during the growth, development, and in responding to stressful conditions. The plant WRKYs play pivotal roles in regulating the secondary cell wall (SCW) biosynthesis and helping plant defend against abiotic stresses. qRT-PCR evidence showed that OsWRKY12 was affected by drought and ABA treatments. Over-expression of OsWRKY12 decreased the drought tolerance of the rice transgenics at the germination stage and the seedling stage. The transcription levels of drought-stress-associated genes as well as those genes participating in the ABA biosynthesis and signaling were significantly different compared to the wild type (WT). Our results also showed that less lignin and cellulose were deposited in the OsWRKY12-overexpressors, and heterogenous expression of OsWRKY12 in atwrky12 could lower the increased lignin and cellulose contents, as well as the improved PEG-stress tolerance, to a similar level as the WT. qRT-PCR results indicated that the transcription levels of all the genes related to lignin and cellulose biosynthesis were significantly decreased in the rice transgenics than the WT. Further evidence from yeast one-hybrid assay and the dual-luciferase reporter system suggested that OsWRKY12 could bind to promoters of OsABI5 (the critical component of the ABA signaling pathway) and OsSWN3/OsSWN7 (the key positive regulators in the rice SCW thickening), and hence repressing their expression. In conclusion, OsWRKY12 mediates the crosstalk between SCW biosynthesis and plant stress tolerance by binding to the promoters of different downstream genes.

2.
Sci Total Environ ; 942: 173812, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857795

ABSTRACT

Prenatal exposures to toxic metals and trace elements have been linked to childhood neurodevelopment. However, existing evidence remains inconclusive, and further research is needed to investigate the mixture effects of multiple metal exposures on childhood neurodevelopment. We aimed to examine the associations between prenatal exposure to specific metals and metal mixtures and neurodevelopment in children. In this prospective cohort study, we used the multivariable linear regressions and the robust modified Poisson regressions to explore the associations of prenatal exposure to 25 specific metals with neurodevelopment among children at 3 years of age in 854 mother-child pairs from the Jiangsu Birth Cohort (JBC) Study. The Bayesian kernel machine regression (BKMR) was employed to assess the joint effects of multiple metals on neurodevelopment. Prenatal manganese (Mn) exposure was negatively associated with the risk of non-optimal cognition development of children, while vanadium (V), copper (Cu), zinc (Zn), antimony (Sb), cerium (Ce) and uranium (U) exposures were positively associated with the risk of non-optimal gross motor development. BKMR identified an interaction effect between Sb and Ce on non-optimal gross motor development. Additionally, an element risk score (ERS), representing the mixture effect of multiple metal exposures including V, Cu, Zn, Sb, Ce and U was constructed based on weights from a Poisson regression model. Children with ERS in the highest tertile had higher probability of non-optimal gross motor development (RR = 2.37, 95 % CI: 1.15, 4.86) versus those at the lowest tertile. Notably, Sb [conditional-posterior inclusion probabilities (cPIP) = 0.511] and U (cPIP = 0.386) mainly contributed to the increased risk of non-optimal gross motor development. The findings highlight the importance of paying attention to the joint effects of multiple metals on children's neurodevelopment. The ERS score may serve as an indicator of comprehensive metal exposure risk for children's neurodevelopment.

3.
Am J Obstet Gynecol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782229

ABSTRACT

BACKGROUND: With remarkable advancements in assisted reproductive technology (ART), the number of ART conceived children continues to increase. Despite increased research investigating the outcomes of ART children, evidence on neurodevelopment remains controversial. OBJECTIVE: The aim of this study was to investigate the association between ART use and neurodevelopment in children at one year of age and to determine whether the characteristics of parental infertility and specific ART procedures affect neurodevelopment in children. STUDY DESIGN: The Jiangsu Birth Cohort enrolled couples who received ART treatment and who conceived spontaneously (2014-2020) in Jiangsu Province, China. In this study, we included 3,531 pregnancies with 3,840 cohort children who completed neurodevelopment assessment at one year of age, including 1,906 infants conceived by ART (including 621 twins). Poisson regressions were fitted to estimate unadjusted and adjusted risk ratios (RRs) and 95% confidence intervals (CIs) for ART use with neurodevelopmental outcomes (cognition, receptive communication, expressive communication, fine motor, and gross motor) in children. RESULTS: Among singletons, ART use was associated with a 24%-34% decrease in the risk for noncompetent development in three domains (cognition, adjusted RR, 0.66; 95% CI, 0.53-0.82; receptive communication, 0.76; 0.64-0.91; expressive communication, 0.69; 0.51-0.93) after adjustment for conventional covariates. However, an inverse association was observed in the gross motor domain, with ART singletons having a greater risk of being noncompetent in gross motor development than their non-ART counterparts (adjusted RR, 1.41; 95% CI, 1.11-1.79). Compared with singletons, twins resulting from ART treatment demonstrated compromised neurodevelopment in several domains. Furthermore, we continued to observe that the transfer of 'poor' quality embryos was associated with greater risks for noncompetent development in receptive communication (adjusted RR, 1.50; 95% CI, 1.05-2.14) and gross motor domains (1.55; 1.02-2.36) among ART singletons. CONCLUSIONS: These results generally provide reassuring evidence among singletons born after ART in the cognition, communication, and fine motor domains, but drawn attention to their gross motor development. The quality of transferred embryos in ART treatment might be associated with offspring neurodevelopment; however, the potential associations warrant further validation in independent studies, and the clinical significance needs careful interpretation.

4.
Phytomedicine ; 129: 155591, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692075

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, characterized by a syndrome of uncontrolled systemic inflammation that often leads to significant morbidity and death. Anti-inflammatory is one of its treatment methods, but there is no safe and available drug therapy. Syringic acid (SA) is a natural organic compound commonly found in a variety of plants, especially in certain woody plants and fruits. In modern pharmacological studies, SA has anti-inflammatory effects and therefore may be a potentially safe and available compound for the treatment of acute lung injury. PURPOSE: This study attempts to reveal the protective mechanism of SA against ALI by affecting the polarization of macrophages and the activation of NF-κB signaling pathway. Trying to find a safer and more effective drug therapy for clinical use. METHODS: We constructed the ALI model using C57BL/6 mice by intratracheal instillation of LPS (10 mg/kg). Histological analysis was performed with hematoxylin and eosin (H&E). The wet-dry ratio of the whole lung was measured to evaluate pulmonary edema. The effect of SA on macrophage M1-type was detected by flow cytometry. BCA protein quantification method was used to determine the total protein concentration in bronchoalveolar lavage fluid (BALF). The levels of Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α in BALF were determined by the ELISA kits, and RT-qPCR was used to detect the expression levels of IL-6, IL-1ß and TNF-α mRNA of lung tissue. Western blot was used to detect the expression levels of iNOS and COX-2 and the phosphorylation of p65 and IκBα in the NF-κB pathway in lung tissue. In vitro experiments were conducted with RAW267.4 cell inflammation model induced by 100 ng/ml LPS and A549 cell inflammation model induced by 10 µg/ml LPS. The effects of SA on M1-type and M2-type macrophages of RAW267.4 macrophages induced by LPS were detected by flow cytometry. The toxicity of compound SA to A549 cells was detected by MTT method which to determine the safe dose of SA. The expressions of COX-2 and the phosphorylation of p65 and IκBα protein in NF-κB pathway were detected by Western blot. RESULTS: We found that the pre-treatment of SA significantly reduced the degree of lung injury, and the infiltration of neutrophils in the lung interstitium and alveolar space of the lung. The formation of transparent membrane in lung tissue and thickening of alveolar septum were significantly reduced compared with the model group, and the wet-dry ratio of the lung was also reduced. ELISA and RT-qPCR results showed that SA could significantly inhibit the production of IL-6, IL-1ß, TNF-α. At the same time, SA could significantly inhibit the expression of iNOS and COX-2 proteins, and could inhibit the phosphorylation of p65 and IκBα proteins. in a dose-dependent manner. In vitro experiments, we found that flow cytometry showed that SA could significantly inhibit the polarization of macrophages from M0 type macrophages to M1-type macrophages, while SA could promote the polarization of M1-type macrophages to M2-type macrophages. The results of MTT assay showed that SA had no obvious cytotoxicity to A549 cells when the concentration was not higher than 80 µM, while LPS could promote the proliferation of A549 cells. In the study of anti-inflammatory effect, SA can significantly inhibit the expression of COX-2 and the phosphorylation of p65 and IκBα proteins in LPS-induced A549 cells. CONCLUSION: SA has possessed a crucial anti-ALI role in LPS-induced mice. The mechanism was elucidated, suggesting that the inhibition of macrophage polarization to M1-type and the promotion of macrophage polarization to M2-type, as well as the inhibition of NF-κB pathway by SA may be the reasons for its anti-ALI. This finding provides important molecular evidence for the further application of SA in the clinical treatment of ALI.


Subject(s)
Acute Lung Injury , Gallic Acid , Lipopolysaccharides , Macrophages , Mice, Inbred C57BL , NF-kappa B , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Mice , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Macrophages/drug effects , NF-kappa B/metabolism , Male , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Lung/drug effects , Lung/pathology , RAW 264.7 Cells , Interleukin-1beta/metabolism , Bronchoalveolar Lavage Fluid , Nitric Oxide Synthase Type II/metabolism , Interleukin-6/metabolism
5.
Nucleic Acids Res ; 52(10): 5643-5657, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38716861

ABSTRACT

Genomic mutations allow bacteria to adapt rapidly to adverse stress environments. The three-dimensional conformation of the genome may also play an important role in transcriptional regulation and environmental adaptation. Here, using chromosome conformation capture, we investigate the high-order architecture of the Zymomonas mobilis chromosome in response to genomic mutation and ambient stimuli (acetic acid and furfural, derived from lignocellulosic hydrolysate). We find that genomic mutation only influences the local chromosome contacts, whereas stress of acetic acid and furfural restrict the long-range contacts and significantly change the chromosome organization at domain scales. Further deciphering the domain feature unveils the important transcription factors, Ferric uptake regulator (Fur) proteins, which act as nucleoid-associated proteins to promote long-range (>200 kb) chromosomal communications and regulate the expression of genes involved in stress response. Our work suggests that ubiquitous transcription factors in prokaryotes mediate chromosome organization and regulate stress-resistance genes in bacterial adaptation.


Subject(s)
Adaptation, Physiological , Bacterial Proteins , Chromosomes, Bacterial , Gene Expression Regulation, Bacterial , Transcription Factors , Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Chromosomes, Bacterial/chemistry , Chromosomes, Bacterial/genetics , Gene Expression Regulation, Bacterial/genetics , Mutation , Repressor Proteins/metabolism , Repressor Proteins/genetics , Stress, Physiological/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Zymomonas/genetics , Zymomonas/metabolism , Nucleic Acid Conformation
6.
J Pharm Biomed Anal ; 246: 116164, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776585

ABSTRACT

Evaluating the quality of herbal medicine based on the content and activity of its main components is highly beneficial. Developing an eco-friendly determination method has significant application potential. In this study, we propose a new method to simultaneously predict the total flavonoid content (TFC), xanthine oxidase inhibitory (XO) activity, and antioxidant activity (AA) of Prunus mume using near-infrared spectroscopy (NIR). Using the sodium nitrite-aluminum nitrate-sodium hydroxide colorimetric method, uric acid colorimetric method, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) free radical scavenging activity as reference methods, we analyzed TFC, XO, and AA in 90 P. mume samples collected from different locations in China. The solid samples were subjected to NIR. By employing spectral preprocessing and optimizing spectral bands, we established a rapid prediction model for TFC, XO, and AA using partial least squares regression (PLS). To improve the model's performance and eliminate irrelevant variables, competitive adaptive reweighted sampling (CARS) was used to calculate the pretreated full spectrum. Evaluation model indicators included the root mean square error of cross-validation (RMSECV) and determination coefficient (R2) values. The TFC, XO, and AA model, combining optimal spectral preprocessing and spectral bands, had RMSECV values of 0.139, 0.117, and 0.121, with RCV2 values exceeding 0.92. The root mean square error of prediction (RMSEP) for the TFC, XO, and AA model on the prediction set was 0.301, 0.213, and 0.149, with determination coefficient (RP2) values of 0.915, 0.933, and 0.926. The results showed a strong correlation between NIR with TFC, XO, and AA in P. mume. Therefore, the established model was effective, suitable for the rapid quantification of TFC, XO, and AA. The prediction method is simple and rapid, and can be extended to the study of medicinal plant content and activity.


Subject(s)
Antioxidants , Flavonoids , Prunus , Spectroscopy, Near-Infrared , Xanthine Oxidase , Spectroscopy, Near-Infrared/methods , Flavonoids/analysis , Prunus/chemistry , Xanthine Oxidase/antagonists & inhibitors , Antioxidants/analysis , Least-Squares Analysis , Enzyme Inhibitors/analysis , Enzyme Inhibitors/pharmacology , China
8.
J Chromatogr A ; 1724: 464910, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38657316

ABSTRACT

A simplified approach for preparation of sandwich type molecularly imprinted polymers (PPDA-MIPs) is proposed for simultaneously identify Low-density lipoprotein (LDL) and dispose "bad cholesterol". Porous polydopamine nanosphere (PPDA) is applied as a matrix for immobilization of LDL, and the imprinted layer is formed by dopamine acting as a functional monomer. Since imprinted cavities exhibit shape memory effects in terms of recognizing selectivity, the PPDA-MIPs exhibit excellent selectivity toward LDL and a substantial binding capacity of 550.3 µg mg-1. Meanwhile, six adsorption/desorption cycles later, the adsorption efficiency of 83.09 % is still achieved, indicating the adequate stability and reusability of PPDA-MIPs. Additionally, over 80 % of cholesterol is recovered, indicating the completeness of "bad cholesterol" removal in LDL. Lastly, as demonstrated by gel electrophoresis, PPDA-MIPs performed satisfactory behavior for the removal of LDL from the goat serum sample.


Subject(s)
Cholesterol , Indoles , Lipoproteins, LDL , Molecularly Imprinted Polymers , Polymers , Lipoproteins, LDL/blood , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/isolation & purification , Adsorption , Polymers/chemistry , Cholesterol/blood , Cholesterol/chemistry , Indoles/chemistry , Animals , Molecularly Imprinted Polymers/chemistry , Dopamine/blood , Dopamine/chemistry , Dopamine/isolation & purification , Dopamine/analysis , Molecular Imprinting/methods , Goats , Nanospheres/chemistry
9.
Cancer Lett ; 591: 216877, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38615930

ABSTRACT

Mantle cell lymphoma (MCL) is an incurable and aggressive subtype of non-Hodgkin B-cell lymphoma. Increased lipid uptake, storage, and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. However, no data has been explored for the roles of lipid metabolism reprogramming in MCL. Here, we identified aberrant lipid metabolism reprogramming and PRMT5 as a key regulator of cholesterol and fatty acid metabolism reprogramming in MCL patients. High PRMT5 expression predicts adverse outcome prognosis in 105 patients with MCL and GEO database (GSE93291). PRMT5 deficiency resulted in proliferation defects and cell death by CRISPR/Cas9 editing. Moreover, PRMT5 inhibitors including SH3765 and EPZ015666 worked through blocking SREBP1/2 and FASN expression in MCL. Furthermore, PRMT5 was significantly associated with MYC expression in 105 MCL samples and the GEO database (GSE93291). CRISPR MYC knockout indicated PRMT5 can promote MCL outgrowth by inducing SREBP1/2 and FASN expression through the MYC pathway.


Subject(s)
Cell Proliferation , Fatty Acid Synthase, Type I , Lipid Metabolism , Lymphoma, Mantle-Cell , Protein-Arginine N-Methyltransferases , Proto-Oncogene Proteins c-myc , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthase, Type I/genetics , Cell Line, Tumor , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Gene Expression Regulation, Neoplastic , Animals , Mice , Male , Prognosis , Female , Cholesterol/metabolism , CRISPR-Cas Systems , Metabolic Reprogramming
10.
J Agric Food Chem ; 72(15): 8831-8839, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38575365

ABSTRACT

Here, we present a method for Salmonella detection using clustered regularly interspaced short palindromic repeats associated with the CRISPR-associated protein 12a-hybridization chain reaction (CRISPR/Cas12a-HCR) system combined with polymerase chain reaction/recombinase-assisted amplification (PCR/RAA) technology. The approach relies on the Salmonella invA gene as a biorecognition element and its amplification through PCR and RAA. In the presence of the target gene, Cas12a, guided by crRNA, recognizes and cleaves the amplification product, initiating the HCR. Fluorescently labeled single-stranded DNA (ssDNA) H1 and H2 were introduced, and the Salmonella concentration was determined based on the fluorescence intensity from the triggered HCR. Both assays demonstrate high specificity, sensitivity, simplicity, and rapidity. The detection range was 2 × 101-2 × 109 CFU/mL, with an LOD of 20 CFU/mL, and the entire process enabled specific and rapid Salmonella detection within 85-105 min. Field-incurred spiked recovery tests were conducted in mutton and beef samples using both assays, demonstrating satisfactory recovery and accuracy in animal-derived foods. By combining CRISPR/Cas12a with hybridization chain reaction technology, this study presents a rapid and sensitive Salmonella detection method that is crucial for identifying pathogenic bacteria and monitoring food safety.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Animals , Cattle , Coloring Agents , DNA, Single-Stranded , Recombinases , Salmonella/genetics , Polymerase Chain Reaction
12.
J Sci Food Agric ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546416

ABSTRACT

Meat and meat products are highly susceptible to contamination by microorganisms and foodborne pathogens, which cause serious economic losses and health hazards. The large consumption and waste of meat and meat products means that there is a need for safe and effective preservation methods. Furthermore, toxicological aspects of chemical preservation techniques related to major health problems have sparked controversies and have prompted consumers and producers to turn to natural preservatives. Consequently, natural preservatives are being increasingly used to ensure the safety and quality of meat products as a result of customer preferences and biological efficacy. However, information on the current status of these preservatives is scattered and a comprehensive review is lacking. Here, we review current knowledge on the classification, mechanisms of natural preservatives and their applications in the preservation of meat and meat products, and also discuss the potential of natural preservatives to improve the safety of meat and meat products. The current status and the current research gaps in the extraction, application and controlled-release of natural antibacterial agents for meat preservation are also discussed in detail. This review may be useful to the development of efficient food preservation techniques in the meat industry. © 2024 Society of Chemical Industry.

17.
Sci Rep ; 14(1): 6445, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499699

ABSTRACT

We aimed to evaluate the association between systemic sclerosis (SSc) and major cerebrovascular/cardiovascular risks through a systematic approach. Databases were systematically searched from their inception to October 10, 2023 for studies comparing cerebrovascular/cardiovascular event rates between patients with SSc and controls. The primary outcome was the stroke risk in patients with SSc. Secondary outcomes included risk of myocardial infarction (MI), cardiovascular disease (CVD), peripheral vascular disease (PVD), and venous thromboembolism (VTE). Seventeen studies with 6,642,297 participants were included. SSc was associated with a significantly increased risk of stroke (HR, 1.64; 95% confidence interval [CI], 1.35-2.01), CVD (HR, 2.12; 95% CI, 1.36-3.3), MI (HR, 2.15; 95% CI, 1.23-3.77), VTE (HR, 2.75; 95% CI, 1.77-4.28), and PVD (HR, 5.23; 95% CI, 4.25-6.45). Subgroup analysis revealed a significantly increased stroke risk in the non-Asian group (HR, 1.55; 95% CI, 1.26-1.9), while the Asian group displayed a higher but not statistically significant risk (HR, 1.86; 95% CI, 0.97-3.55). The study found that SSc is associated with a significantly increased risk of cerebrovascular/cardiovascular events. These findings highlight the importance of vasculopathy in SSc and suggest the need for enhanced clinical monitoring and preventive measures in this high-risk population.


Subject(s)
Cardiovascular Diseases , Myocardial Infarction , Peripheral Vascular Diseases , Scleroderma, Systemic , Stroke , Venous Thromboembolism , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Myocardial Infarction/epidemiology , Myocardial Infarction/etiology , Stroke/epidemiology , Stroke/etiology , Peripheral Vascular Diseases/epidemiology , Scleroderma, Systemic/complications , Scleroderma, Systemic/epidemiology
19.
Polymers (Basel) ; 16(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38543454

ABSTRACT

Natural anthocyanin indicator films with an excellent pH response enable the visual assessment of meat freshness. In this investigation, chitosan was initially employed as a colorimetric enhancer, leading to the development of a pH-sensitive indicator film that was enhanced in colorimetry. The characteristics of this indicator film were thoroughly analyzed, and the mechanism responsible for the increased sensitivity of anthocyanin within the chitosan matrix, as indicated by the color response, was elucidated. The recrystallization of chitosan impeded the hydration of AH+ as the pH increased from 6.0 to 8.0, leading to distinct color changes. Moreover, the application of this indicator film was extended to the monitoring of mutton meat freshness. It facilitated the differentiation of mutton meat into three distinct stages, namely, fresh, sub-fresh, and spoiled, based on alterations in color. Additionally, a robust positive correlation was established between the color difference value of the indicator film and the total volatile basic nitrogen and bacterial count of the mutton meat, enabling quantitative analysis. The present study, therefore, demonstrated a novel function of chitosan, i.e., the enhancement of the color of anthocyanin, which could be useful in designing and fabricating indicator films with a high color response.

SELECTION OF CITATIONS
SEARCH DETAIL
...