Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.762
Filter
1.
Front Neurosci ; 18: 1383780, 2024.
Article in English | MEDLINE | ID: mdl-38841097

ABSTRACT

Backgrounds: Type 2 Diabetes Mellitus (T2DM) has become a significant global public health issue, characterized by a rising prevalence and associated deficits across multiple organ systems. Our study aims to utilize the DTI-ALPS technique to assess the change of ALPS index in T2DM patients, and to explore whether such changes are correlated with cognition level and diffusion parameters. Methods: The study involved 41 patients with T2DM (mean age, 60.49 ± 8.88 years) and 27 healthy controls (mean age, 58.00 ± 7.63 years). All subjects underwent MRI examination, cognitive assessment, and laboratory tests. Tract-based spatial statistics (TBSS) was used to evaluate white matter changes. GLM was performed to check the DTI-ALPS index difference between T2DM and HC groups. Spearman correlation analysis and partial correlation analysis were used to analyze the correlation between the DTI-ALPS index and diffusion properties & cognitive scores. Results: The results show that the ALPS index was lower in T2DM patients. MoCA score was significantly correlated with the ALPS index. Patients with T2DM had a significant increase in both mean diffusivity (MD) and radial diffusivity (RD) and decrease in fractional anisotropy (FA) compared to the HC group. Conclusion: The results suggest that the ALPS index is decreased in T2DM patients and associates with cognitive level.

2.
Front Oncol ; 14: 1369027, 2024.
Article in English | MEDLINE | ID: mdl-38690163

ABSTRACT

Objective: Metabolic risks (MRs) are the primary determinants of breast cancer (BC) mortality among women. This study aimed to examine the changing trends in BC mortality associated with MRs and explore how they related to age, time period, and birth cohorts in Chinese women aged 25 and above. Methods: Data were sourced from the Global Burden of Disease Study 2019 (GBD2019). The BC mortality trajectories and patterns attributable to MRs were assessed using Joinpoint regression. The age-period-cohort (APC) model was employed to evaluate cohort and time period effects. Results: The age-standardized mortality rate (ASMR) of BC mortality linked to MRs displayed an escalating trend from 1990 to 2019, demonstrating an average annual percentage change (AAPC) of 1.79% (95% CI: 1.69~1.87). AAPCs attributable to high fasting plasma glucose (HFPG) and high body mass index (HBMI) were 0.41% (95% CI: 0.32~0.53) and 2.75% (95% CI: 2.68~2.82), respectively. APC analysis revealed that BC mortality due to HBMI in women aged 50 and above showed a rise with age and mortality associated with HFPG consistently demonstrated a positive correlation with age. The impact of HBMI on BC mortality significantly outweighed that of HFPG. The risk of BC mortality linked to HBMI has steadily increased since 2005, while HFPG demonstrated a trend of initial increase followed by a decrease in the period effect. Regarding the cohort effect, the relative risk of mortality was greater in the birth cohort of women after the 1960s of MRs on BC mortality, whereas those born after 1980 displayed a slight decline in the relative risk (RR) associated with BC mortality due to HBMI. Conclusion: This study suggests that middle-aged and elderly women should be considered as a priority population, and control of HBMI and HFPG should be used as a primary tool to control metabolic risk factors and effectively reduce BC mortality.

3.
Eng Life Sci ; 24(5): 2300207, 2024 May.
Article in English | MEDLINE | ID: mdl-38708415

ABSTRACT

Human activities have led to the release of various environmental pollutants, triggering ecological challenges. In situ, microbial communities in these contaminated environments are usually assumed to possess the potential capacity of pollutant degradation. However, the majority of genes and microorganisms in these environments remain uncharacterized and uncultured. The advent of meta-omics provided culture-independent solutions for exploring the functional genes and microorganisms within complex microbial communities. In this review, we highlight the applications and methodologies of meta-omics in uncovering of genes and microbes from contaminated environments. These findings may assist in future bioremediation research.

4.
Nat Commun ; 15(1): 3777, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710683

ABSTRACT

Liquid Chromatography Mass Spectrometry (LC-MS) is a powerful method for profiling complex biological samples. However, batch effects typically arise from differences in sample processing protocols, experimental conditions, and data acquisition techniques, significantly impacting the interpretability of results. Correcting batch effects is crucial for the reproducibility of omics research, but current methods are not optimal for the removal of batch effects without compressing the genuine biological variation under study. We propose a suite of Batch Effect Removal Neural Networks (BERNN) to remove batch effects in large LC-MS experiments, with the goal of maximizing sample classification performance between conditions. More importantly, these models must efficiently generalize in batches not seen during training. A comparison of batch effect correction methods across five diverse datasets demonstrated that BERNN models consistently showed the strongest sample classification performance. However, the model producing the greatest classification improvements did not always perform best in terms of batch effect removal. Finally, we show that the overcorrection of batch effects resulted in the loss of some essential biological variability. These findings highlight the importance of balancing batch effect removal while preserving valuable biological diversity in large-scale LC-MS experiments.


Subject(s)
Mass Spectrometry , Neural Networks, Computer , Chromatography, Liquid/methods , Mass Spectrometry/methods , Humans , Reproducibility of Results , Liquid Chromatography-Mass Spectrometry
5.
Fitoterapia ; 176: 106030, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38768795

ABSTRACT

Four pairs of undescribed enantiomeric guaiane sesquiterpenoids, (±)-alismaenols A-D (1a/1b, 3a/3b-5a/5b), together with a pair of known ones (2a/2b) were isolated from the rhizomes of Alisma plantago-aquatica. The structures and relative configurations of the isolates were established by analysis of their 1D, 2D-NMR and HRESIMS data. Their absolute configurations were determined by comparison of their experimental CD spectra and calculated electronic circular dichroism (ECD) spectra or by single-crystal X-ray diffraction analysis. All compounds (1a/1b-5a/5b) were evaluated for their inhibitory effects on nitric oxide (NO) production in LPS-induced RAW 264.7 cells, and compound 1a exhibited stronger activity (IC50 = 12.89 µM) than indomethacin (IC50 = 14.03 µM).

6.
PLoS One ; 19(5): e0303858, 2024.
Article in English | MEDLINE | ID: mdl-38781270

ABSTRACT

OBJECTIVE: The study aims to explore the driving forces behind physical activity engagement among patients with chronic obstructive pulmonary disease, focusing on motivation, opportunity, and capability. DESIGN: A phenomenological qualitative study applied the motivation, opportunity, and capability model, conducted in two respiratory units of a Chinese university hospital. METHODS: Participants, selected by age, gender, and illness duration, included inpatients during the interview sessions and those recently discharged within six months. One-on-one semi-structured interviews were recorded, transcribed, and analyzed by the Colaizzi seven-step method. RESULTS: Seventeen participants diagnosed with chronic obstructive pulmonary disease for over one year aged between 66 (range: 42-96) participated. Three major themes were identified: Inspiring participation motivation-transitioning from recognizing significance to habit formation; Offering participation opportunities-reiterating demand for personalized strategies and ideal environmental settings; Enhancing participation capability-addressing strategies for overcoming fears, setting goals, ensuring safety, and adjusting activity levels. CONCLUSIONS: This research underscores the vital role of inspiring participation motivation, offering opportunities, and enhancing the capability for participation in effective engagement. Advocating increased attention from healthcare departments, fostering interdisciplinary collaboration, improving activity guidance and counseling effectiveness, and considering individual preferences can significantly benefit those patients with chronic obstructive pulmonary disease who hesitate or are unable to participate in physical activities, thereby increasing the dose of non-leisure time physical activity.


Subject(s)
Exercise , Motivation , Pulmonary Disease, Chronic Obstructive , Qualitative Research , Humans , Pulmonary Disease, Chronic Obstructive/psychology , Pulmonary Disease, Chronic Obstructive/therapy , Middle Aged , Male , Female , Aged , Adult , Aged, 80 and over , Exercise/psychology
7.
BMC Cardiovasc Disord ; 24(1): 270, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783200

ABSTRACT

BACKGROUND: Insulin resistance (IR) and obesity are established risk factors for hypertension, with triglyceride-glucose (TyG) serving as a recognized surrogate marker for IR. The aim of this study was to investigate the association between TyG-BMI and hypertension in the general population. METHODS: A total of 60,283 adults aged ≥18 years who underwent face-to-face questionnaires, anthropometric measurements, and laboratory examination were included in this study. Multivariable logistic regression models and receiver operating characteristic curve (ROC) were used to determine the association between TyG-BMI and hypertension. The restricted cubic spline model was used for the dose-response analysis. RESULTS: After fully adjusting for confounding variables, multivariate logistic regression model showed a stable positive association between TyG-BMI and hypertension (OR: 1.61 per SD increase; 95% CI: 1.55-1.67; P-trend < 0.001). The multivariate adjusted OR and 95% CI for the highest TyG-BMI quartile compared with the lowest quartile were 2.52 (95% CI 2.28-2.78). Dose-response analysis using restricted cubic spline confirmed that the association between TyG-BMI index and hypertension was linear. Subgroup analyses showed that stronger associations between TyG-BMI index and hypertension were detected in young and middle-aged individuals (P for interaction < 0.05). ROC analysis showed that TyG-BMI index could better predict the risk of hypertension than other parameters (TyG-BMI cut-off value: 207.105, AUC: 0.719, sensitivity 65.5%, specificity 66.8%), particularly among young and middle-aged people. CONCLUSION: The TyG-BMI index was independently associated with hypertension in the study population. Further studies are required to confirm this relationship.


Subject(s)
Biomarkers , Blood Glucose , Body Mass Index , Hypertension , Triglycerides , Humans , Male , Female , Hypertension/epidemiology , Hypertension/diagnosis , Hypertension/blood , China/epidemiology , Cross-Sectional Studies , Middle Aged , Risk Factors , Adult , Triglycerides/blood , Blood Glucose/metabolism , Blood Glucose/analysis , Biomarkers/blood , Risk Assessment , Aged , Obesity/epidemiology , Obesity/diagnosis , Obesity/blood , Insulin Resistance , Multivariate Analysis , Young Adult , Blood Pressure , Odds Ratio , ROC Curve , Predictive Value of Tests , Chi-Square Distribution , Logistic Models , Area Under Curve
8.
PLoS One ; 19(5): e0298774, 2024.
Article in English | MEDLINE | ID: mdl-38722915

ABSTRACT

OBJECTIVE: Hand osteoarthritis poses a significant health challenge globally due to its increasing prevalence and the substantial burden on individuals and the society. In current clinical practice, treatment options for hand osteoarthritis encompass a range of approaches, including biological agents, antimetabolic drugs, neuromuscular blockers, anti-inflammatory drugs, hormone medications, pain relievers, new synergistic drugs, and other medications. Despite the diverse array of treatments, determining the optimal regimen remains elusive. This study seeks to conduct a network meta-analysis to assess the effectiveness and safety of various drug intervention measures in the treatment of hand osteoarthritis. The findings aim to provide evidence-based support for the clinical management of hand osteoarthritis. METHODS: We performed a comprehensive search across PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials was conducted until September 15th, 2022, to identify relevant randomized controlled trials. After meticulous screening and data extraction, the Cochrane Handbook's risk of bias assessment tool was applied to evaluate study quality. Data synthesis was carried out using Stata 15.1 software. RESULTS: 21 studies with data for 3965 patients were meta-analyzed, involving 20 distinct Western medicine agents. GCSB-5, a specific herbal complex that mainly regulate pain in hand osteoarthritis, showed the greatest reduction in pain [WMD = -13.00, 95% CI (-26.69, 0.69)]. CRx-102, s specific medication characterized by its significant effect for relieving joint stiffness symptoms, remarkably mitigated stiffness [WMD = -7.50, 95% CI (-8.90, -6.10)]. Chondroitin sulfate displayed the highest incidence of adverse events [RR = 0.26, 95% CI (0.06, 1.22)]. No substantial variation in functional index for hand osteoarthritis score improvement was identified between distinct agents and placebo. CONCLUSIONS: In summary, GCSB-5 and CRx-102 exhibit efficacy in alleviating pain and stiffness in HOA, respectively. However, cautious interpretation of the results is advised. Tailored treatment decisions based on individual contexts are imperative.


Subject(s)
Osteoarthritis , Humans , Osteoarthritis/drug therapy , Osteoarthritis/therapy , Network Meta-Analysis , Treatment Outcome , Hand , Randomized Controlled Trials as Topic
9.
J Colloid Interface Sci ; 671: 553-563, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38820840

ABSTRACT

Recently, the solar-driven interfacial evaporation desalination has attracted more and more attentions due to the advantages of low cost, zero energy consumption, and high water purification rate, etc. One of the bottlenecks of this emerging technique lies in a lack of simple and low-cost ways to construct three-dimensional (3D) hierarchical microstructures for photothermal membranes. To this end, a two-step strategy is carried out by combining surface functionalization with substrate engineering. Firstly, a silane coupling agent 3-aminopropyltriethoxysilane (APTES) is grafted onto an ideal photothermal material of Ti3C2Tx MXene, to improve the nanochannel sizes and hydrophilicity, which are attributed to enlarged interspaces of MXene and introduced hydrophilic group e.g., -NH2 and -OH, respectively. Secondly, a low-cost and robust nonwoven fiber (NWF) substrate, which has a 3D micron-sized mesh structure with interlaced fiber stacks, is employed as the skeleton to load enough APTES-grafted MXene by a simple soaking method. Benefited from above design, the Ti3C2Tx-APTES/NWF composite membrane with a 3D hierarchical structure shows enhanced light scattering and utilization, water transport and vapor escape. A remarkable evaporation rate of 1.457 kg m-2 h-1 and an evaporation efficiency of 91.48 % are attained for a large-area (5 × 5 cm2) evaporator, and the evaporation rate is further increased to 1.672 kg m-2 h-1 for a small-area (2 × 2 cm2) device. The rejection rates of salt ions and heavy metal ions are higher than 99 % and 99.99 %, respectively, and the removal rates of organic dye molecules are nearly to 100 %. Besides, the composite photothermal membrane exhibits great stabilities in harsh conditions such as high salinities, long cycling, large light intensities, strong acid/alkali environments, and mechanical bending. Most importantly, the photothermal membrane shows a considerable cost-effectiveness of 89.4 g h-1/$. Hence, this study might promote the commercialization of solar-driven interfacial evaporation desalination by collaboratively considering surface modification and substrate engineering for MXene.

10.
Sci Total Environ ; 934: 173203, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754500

ABSTRACT

Input of root litter can alter soil organic carbon (SOC) dynamics via causing priming effect (PE) on native SOC decomposition and forming new SOC. However, it is unknown how functional type mediates the root litter-driven PE and new C formation as well as their response to warming, which are of pivotal for soil C budget. We mixed litter segments of absorptive roots and transport roots from a Chinese fir (Cunninghamia lanceolata) plantation into isotopically distinct soil and incubated at 19°C (local mean annual temperature) and 23°C (warming by 4°C) for 210 days. Cumulative PE was calculated via integrating the instantaneous PE rates during the incubation. And the newly formed root litter-derived SOC (SOCrl) was calculated by measuring the δ13C value of soil at the end of incubation using a two-source mixed model. We found that absorptive roots with faster decomposition rates, caused significantly higher cumulative PE and SOCrl than transport roots. The microbial biomass and enzyme activities involved in C, N and P acquisition were significantly higher in the absorptive- than the transport roots addition treatment, indicating a higher level of microbial activation caused by absorptive roots. Although warming significantly increased the litter decomposition for both of functional types, while just significantly increased the PE of transport roots, indicating a root functional type dependent sensitivity of PE to warming. However, warming had no significant effect on SOCrl either for absorptive roots or for transport roots. As a consequence, warming relatively decreased the net SOC balance (difference between PE and SOCrl) in the transport roots addition treatment. Overall, our study highlights, for the first time, that functional type primarily mediates the response of root litter-driven PE to climate warming but not the new C formation, which may advance our understanding of SOC dynamics in Chinese fir plantation under climate change.


Subject(s)
Carbon , Plant Roots , Soil , Soil/chemistry , Carbon/metabolism , Global Warming , Cunninghamia , Climate Change , China
11.
J Biol Chem ; 300(6): 107343, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38705395

ABSTRACT

Rieske nonheme iron aromatic ring-hydroxylating oxygenases (RHOs) play pivotal roles in determining the substrate preferences of polycyclic aromatic hydrocarbon (PAH) degraders. However, their potential to degrade high molecular weight PAHs (HMW-PAHs) has been relatively unexplored. NarA2B2 is an RHO derived from a thermophilic Hydrogenibacillus sp. strain N12. In this study, we have identified four "hotspot" residues (V236, Y300, W316, and L375) that may hinder the catalytic capacity of NarA2B2 when it comes to HMW-PAHs. By employing structure-guided rational enzyme engineering, we successfully modified NarA2B2, resulting in NarA2B2 variants capable of catalyzing the degradation of six different types of HMW-PAHs, including pyrene, fluoranthene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene. Three representative variants, NarA2B2W316I, NarA2B2Y300F-W316I, and NarA2B2V236A-W316I-L375F, not only maintain their abilities to degrade low-molecular-weight PAHs (LMW-PAHs) but also exhibited 2 to 4 times higher degradation efficiency for HMW-PAHs in comparison to another isozyme, NarAaAb. Computational analysis of the NarA2B2 variants predicts that these modifications alter the size and hydrophobicity of the active site pocket making it more suitable for HMW-PAHs. These findings provide a comprehensive understanding of the relationship between three-dimensional structure and functionality, thereby opening up possibilities for designing improved RHOs that can be more effectively used in the bioremediation of PAHs.

12.
Environ Int ; 188: 108741, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749118

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and carbon dioxide primarily originate from the combustion of fossil fuels and biomass. The implementation of the Chinese "double carbon strategy" is expected to impact the distribution of PAH emissions, consequently influencing the spatial distribution trend of PAHs in surface soil. Therefore, it is crucial to quantitatively evaluate the effectiveness of the Chinese "double carbon strategy" on soil PAH pollution for the purpose of "the reduction of pollution and carbon emissions". This study utilized 15,088 individual PAH concentration data from 943 soil samples collected between 2003 and 2020 in China, in conjunction with PAH emissions at a 10 km resolution, for meta-analysis. The calculated PAH emissions in this study are in line with the global PAH emission inventory (PKU-PAH-2007), with a relative standard deviation at the provincial level of less than 25 %. Subsequently, a novel method was developed using emission density and Kow of PAHs to predict PAH concentrations in surface soil based on a least-squares regression model. Compared to other environmental models, the method established in this study significantly reduced the percent sample deviation to less than 70 %. Furthermore, energy consumption data for China were simulated based on the implementation plan of the "double carbon strategy" to project PAH emissions and soil PAH levels for the years 2030 and 2060. The predicted PAH emissions in China were estimated to decrease to 41,300 t in 2030 and 10,406.5 t in 2060 from 78,815 t in 2020. Moreover, the heavily contaminated areas of soil PAHs (i.e., total PAH concentrations in soil exceeding 1000 µg kg-1) were projected to decrease by 45 % and 82 % in 2030 and 2060, respectively, compared to levels in 2020. These findings suggest that the implementation of the "double carbon strategy" can fundamentally reduce the pollution of PAHs in surface soil of China.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , China , Soil Pollutants/analysis , Environmental Monitoring/methods , Soil/chemistry , Environmental Pollution , Carbon/analysis , Carbon Dioxide/analysis , East Asian People
13.
J Comput Chem ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760960

ABSTRACT

Theoretical modeling of the solid-state photocatalysis is one of the important issues as various useful photocatalysts have been developed to date. In this work, we investigated the mechanism of the alcohol photooxidation on niobium oxide (Nb2O5) which was experimentally developed, using the density functional theory (DFT)/time-dependent (TD)DFT calculations based on the cluster model. The alcohol adsorption and the first hydrogen transfer from hydroxy group to surface occur in the ground state, while the second hydrogen transfer from CH proceeds in the excited states during the photoirradiation of UV or visible light. The spin crossing was identified and the low-lying triplet states were solved for the reaction pathway. The photoabsorption in the visible light region was characterized as the charge transfer transition from O 2p of alcohol to Nb 4d of the Nb2O5 surface. The spin density and the natural population analysis indicated the generation of spin density in the moiety of carbonyl compound and its dissipation to the interface of the surface, which partly explains the electron paramagnetic resonance measurement. It was confirmed that the rate determining step is the desorption of carbonyl compound and water molecule in agreement with the experimental rate equation analysis. The present findings with the theoretical modeling will provide useful information for the further studies of the solid-state photocatalysis.

14.
J Neurochem ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761015

ABSTRACT

Most central nervous diseases are accompanied by astrocyte activation. Autophagy, an important pathway for cells to protect themselves and maintain homeostasis, is widely involved in regulation of astrocyte activation. Reactive astrocytes may play a protective or harmful role in different diseases due to different phenotypes of astrocytes. It is an urgent task to clarify the formation mechanisms of inflammatory astrocyte phenotype, A1 astrocytes. Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions as a potential protective role in oxidative damage process. However, whether Sestrin2 can affect autophagy and involve in A1 astrocyte conversion is still uncovered. In this study, we reported that Sestrin2 and autophagy were significantly induced in mouse hippocampus after multiple intraperitoneal injections of lipopolysaccharide, with the elevation of A1 astrocyte conversion and inflammatory mediators. Knockdown Sestrin2 in C8-D1A astrocytes promoted the levels of A1 astrocyte marker C3 mRNA and inflammatory factors, which was rescued by autophagy inducer rapamycin. Overexpression of Sestrin2 in C8-D1A astrocytes attenuated A1 astrocyte conversion and reduced inflammatory factor levels via abundant autophagy. Moreover, Sestrin2 overexpression improved mitochondrial structure and morphology. These results suggest that Sestrin2 can suppress neuroinflammation by inhibiting A1 astrocyte conversion via autophagy, which is a potential drug target for treating neuroinflammation.

15.
J Biol Chem ; : 107379, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762184

ABSTRACT

Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to single-stranded DNA (ssDNA); however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.

16.
J Magn Reson Imaging ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721820

ABSTRACT

BACKGROUND: The angiographic features of moyamoya disease (MMD) and atherosclerosis-associated moyamoya vasculopathy (AS-MMV) are similar, but the etiology and clinical treatment strategies are different. Differentiating MMD from AS-MMV helps to choose the appropriate treatment. PURPOSE: To investigate the feasibility of a nomogram based on high-resolution vessel wall (HR-VWI) MRI features to differentiate MMD from AS-MMV. STUDY TYPE: Retrospective. SUBJECTS: One hundred and two patients with MMD (N = 52) or AS-MMV (N = 50) in the training cohort (9-72 years; 54 females) and 70 patients with MMD (N = 42) or AS-MMV (N = 28) in the validation cohort (7-69 years; 33 females). FIELD STRENGTH/SEQUENCE: 3-T, three-dimensional time-of-flight MR angiography (3D-TOF-MRA), spin echo high-resolution 3D T1-weighted imaging (3D-T1WI), 3D T2-weighted imaging (3D-T2WI), and contrast-enhanced 3D-T1WI. ASSESSMENT: Image assessment was performed by three neuroradiologists (with 10, 15, and 18 years of experience). Demographic characteristic and image features were evaluated and compared. Independent factors of MMD were screened to construct a nomogram model in the training cohort. The validation cohort was used to validated its generality. STATISTICAL TESTS: Interclass correlation coefficient (ICC), kappa, t-test, χ2 test, receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve and concordance index (C-index). A P-value <0.05 was considered statistically significant. RESULTS: Significant differences were observed between MMD and AS-MMV in terms of age, vessel outer diameter, vessel wall thickening pattern, maximum thickness, dot sign, and anterior cerebral artery (ACA) involved. Age, outer diameter, dot sign, and ACA involved were independent factors. The C-index was 0.886 in the training cohort and 0.859 in the validation cohort. The ROC demonstrated high diagnostic efficacy with an AUC of 0.884 in the training cohort and 0.857 in the validation cohort. DATA CONCLUSION: A nomogram model based on age, vessel outer diameter, dot sign and ACA involved may effectively distinguish MMD from AS-MMV with good reliability and accuracy. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.

17.
Article in English | MEDLINE | ID: mdl-38795771

ABSTRACT

OBJECTIVES: Colistin is known as the last resort antibiotic to treat the infections caused by multi-drug resistant (MDR) foodborne pathogens. The emergence and widespread dissemination of plasmid-mediated colistin resistance gene mcr-1 in the E. coli incurs potential threat to public health. Here, we investigated the epidemiology, transmission dynamics, and genetic characterization of mcr-1 harboring E. coli isolates from poultry origin in Hebei province, China. METHODS: A total of 297 fecal samples were collected from the two large poultry farms in Hebei province, China. The samples were processed for E. coli identification by MALDI-TOF-MS and 16S rD4A sequencing. Then, mcr-1 gene harboring E. coli strains were identified by PCR and subjected to antimicrobial susceptibility testing by broth microdilution assay. The genomic characterization of the isolates was done by whole genome sequencing using the various bioinformatics tools, and multi-locus sequence typing (MLST) was done by sequence analysis of the seven housekeeping genes. The conjugation experiment was done to check the transferability of mcr-1 along with the plasmid stability testing. RESULTS: A total of six mcr-1 E. coli isolates with MIC of 4 µg/mL were identified from 297 samples (2.02%). The mcr-1 harboring E. coli were identified as MDR and belonged to ST101 (n=4) and ST410 (n=2). The genetic environment of mcr-1 presented its position on IncHI2 plasmid in four isolates and p0111 in two isolates which is rarely reported plasmid type for mcr-1. Moreover, both type of plasmids was transferable to recipient J53, and mcr-1 was flanked by three mobile elements ISApl1, Tn3, and IS26 forming a novel backbone Tn3-IS26-mcr-1- pap2-ISApl1 on p0111 plasmid. The phylogenetic analysis shared a common lineage with mcr-1 harboring isolates from the environment, human and animals which indicate its horizontal spread among the diverse sources, species, and hosts. CONCLUSION: This study recommends the one health approach for future surveillance across multiple sources and bacterial species to adopt relevant measures and reduce global resistance crises.

18.
Heliyon ; 10(7): e28845, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596005

ABSTRACT

Objectives: The aim of this study was to investigate the association between physical activities combined with dietary habits and cardiovascular risk factors in adults from Nanjing, China. Methods: The cross-sectional survey conducted in 2017 involved a sample of 60 283 individuals aged ≥18 years in Nanjing municipality, China. The sampling method used was multistage stratified cluster sampling. The primary outcomes from multivariate logistic regression analysis with adjusted potential confounders were the relationships between physical activities combined with dietary habits and cardiovascular risk variables. Relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (S) were used to assess an additive interaction between dietary habits and physical activities. Results: After adjusting potential confounders, cardiovascular risk factors were significantly associated with the association of physical inactivity and unhealthy diet, with the highest odds ratios (ORs) for low density lipoprotein-cholesterol (HLDL-c) (1.64, 95% CI [1.47, 1.84]) and hypertension (1.55, 95% CI [1.46, 1.64]). Additive interactions between physical inactivity and unhealthy diet were found in on cardiovascular risk factors of higher low-density lipoprotein-cholesterol (HLDL-c) (S, 2.57; 95% CI [1.27, 5.21]), type 2 diabetes (T2D) (S, 1.96; 95% CI [1.23, 3.13]), dyslipidemia (S, 1.69; 95% CI [1.08, 2.66]) and hypertension (S, 1.46; 95% CI [1.12, 1.89]). Their RERI was 0.39 (95% CI [0.18, 0.60]), 0.22 (95% CI [0.09, 0.35]), 0.11 (95% CI [0.03, 0.19]) and 0.17 (95% CI [0.06, 0.28]), respectively. OR of being HLDL-c, T2D, hypertension and dyslipidemia in participants of physical inactivity and unhealthy diet was 24%, 15%, 11% and 8.3%, respectively. Multiplicative interaction was detected in obesity, hypertension, T2D and HLDL-c. Conclusion: An unhealthy diet and physical inactivity were strongly linked to cardiovascular risk factors. This study also showed that an unhealthy diet and physical inactivity combined to produce an additive effect on T2D, hypertension, HLDL-c, and dyslipidemia, suggesting a higher risk than the total of these factors, especially HLDL-c. Preventive strategies aimed at reducing cardiometabolic risks such as hypertension, T2D, HLDL-c, and dyslipidemia are necessary for targeting physical inactivity and unhealthy diet.

19.
Adv Biol (Weinh) ; : e2300409, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38596839

ABSTRACT

Schizophrenia (SCZ) is a complex neuropsychiatric disorder widely recognized for its impaired bioenergy utilization. The astrocyte-neuron lactate shuttle (ANLS) plays a critical role in brain energy supply. Recent studies have revealed abnormal lactate metabolism in SCZ, which is associated with mitochondrial dysfunction, tissue hypoxia, gastric acid retention, oxidative stress, neuroinflammation, abnormal brain iron metabolism, cerebral white matter hypermetabolic activity, and genetic susceptibility. Furthermore, astrocytes, neurons, and glutamate abnormalities are prevalent in SCZ with abnormal lactate metabolism, which are essential components for maintaining ANLS in the brain. Therefore, an in-depth study of the pathophysiological mechanisms of ANLS in SCZ with abnormal lactate metabolism will contribute to a better understanding of the pathogenesis of SCZ and provide new ideas and approaches for the diagnosis and treatment of SCZ.

20.
Article in English | MEDLINE | ID: mdl-38603469

ABSTRACT

The electrochemical interface formed between an electrode and an electrolyte significantly affects the rate and mechanism of the electrode reaction through its structure and properties, which vary across the interface. The scope of the interface has been expanded, along with the development of energy electrochemistry, where a solid-electrolyte interphase may form on the electrode and the active materials change properties near the surface region. Developing a comprehensive understanding of electrochemical interfaces and interphases necessitates three-dimensional spatial resolution characterization. Atomic force microscopy (AFM) offers advantages of imaging and long-range force measurements. Here we assess the capabilities of AFM by comparing the force curves of different regimes and various imaging modes for in situ characterizing of electrochemical interfaces and interphases. Selected examples of progress on work related to the structures and processes of electrode surfaces, electrical double layers, and lithium battery systems are subsequently illustrated. Finally, this review provides perspectives on the future development of electrochemical AFM.

SELECTION OF CITATIONS
SEARCH DETAIL
...