Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 348
Filter
1.
BMC Musculoskelet Disord ; 25(1): 360, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714980

ABSTRACT

OBJECTIVE: Increasing research suggests that paraspinal muscle fat infiltration may be a potential biological marker for the assessment of osteoporosis. Our aim was to investigate the relationship between lumbar paraspinal muscle properties on MRI and volumetric bone mineral density (vBMD) based on QCT in patients with lumbar disc herniation (LDH). METHODS: A total of 383 patients (aged 24-76 years, 193 females) with clinically and radiologically diagnosed LDH were enrolled in this retrospective study. The muscle cross-sectional area (CSA) and the proton density fat fraction (PDFF) were measured for the multifidus (MF), erector spinae (ES) and psoas major (PS) at the central level of L3/4, L4/5 and L5/S1 on lumbar MRI. QCT was used to measure the vBMD of two vertebral bodies at L1 and L2 levels. Patients were divided into three groups based on their vBMD values: normal bone density group (> 120 mg/cm3), osteopenia group (80 to 120 mg/cm3) and osteoporosis group (< 80 mg/cm3). The differences in paraspinal muscle properties among three vBMD groups were tested by one-way ANOVA with post hoc analysis. The relationships between paraspinal muscle properties and vBMD were analyzed using Pearson correlation coefficients. Furthermore, the association between vBMD and paraspinal muscle properties was further evaluated using multiple linear regression analysis, with age and sex also included as predictors. RESULTS: Among the 383 LDH patients, 191 had normal bone density, 129 had osteopenia and 63 had osteoporosis. In LDH patients, compared to normal and osteopenia group, paraspinal muscle PDFF was significantly greater in osteoporosis group, while paraspinal muscle CSA was lower (p < 0.001). After adjusting for age and sex, it was found that MF PDFF and PS CSA were found to be independent factors influencing vBMD (p < 0.05). CONCLUSION: In patients with LDH, paraspinal muscle properties measured by IDEAL-IQ sequence and lumbar MR scan were found to be related to vBMD. There was a correlation between the degree of paraspinal muscle PDFF and decreasing vBMD, as well as a decrease paraspinal muscle CSA with decreasing vBMD. These findings suggest that clinical management should consider offering tailored treatment options for patients with LDH based on these associations.


Subject(s)
Bone Density , Intervertebral Disc Displacement , Lumbar Vertebrae , Magnetic Resonance Imaging , Osteoporosis , Paraspinal Muscles , Humans , Middle Aged , Female , Male , Paraspinal Muscles/diagnostic imaging , Paraspinal Muscles/pathology , Paraspinal Muscles/physiopathology , Adult , Bone Density/physiology , Lumbar Vertebrae/diagnostic imaging , Intervertebral Disc Displacement/diagnostic imaging , Intervertebral Disc Displacement/physiopathology , Retrospective Studies , Aged , Osteoporosis/diagnostic imaging , Tomography, X-Ray Computed , Young Adult , Bone Diseases, Metabolic/diagnostic imaging , Bone Diseases, Metabolic/etiology
2.
Angew Chem Int Ed Engl ; : e202404481, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699952

ABSTRACT

The pursuit of fabricating high-performance graphene films has aroused considerable attention due to their potential for practical applications. However, developing both stretchable and tough graphene films remains a formidable challenge. To address this issue, we herein introduce mechanical bond to comprehensively improve the mechanical properties of graphene films, utilizing [2]rotaxane as the bridging unit. Under external force, the [2]rotaxane cross-link undergoes intramolecular motion, releasing hidden chain and increasing the interlayer slip distance between graphene nanosheets. Compared with graphene films without [2]rotaxane cross-linking, the presence of mechanical bond not only boosted the strength of graphene films (247.3 vs 74.8 MPa) but also markedly promoted the tensile strain (23.6 vs 10.2%) and toughness (23.9 vs 4.0 MJ/m3). Notably, the achieved tensile strain sets a record high and the toughness surpasses most reported results, rendering the graphene films suitable for applications as flexible electrodes. Even when the films were stretched within a 20% strain and repeatedly bent vertically, the light-emitting diodes maintained an on-state with little changes in brightness. Additionally, the film electrodes effectively actuated mechanical joints, enabling uninterrupted grasping movements. Therefore, the study holds promise for expanding the application of graphene films and simultaneously inspiring the development of other high-performance two-dimensional films.

3.
J Plant Res ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758249

ABSTRACT

Various environmental stresses induce the production of reactive oxygen species (ROS), which have deleterious effects on plant cells. Glutathione (GSH) is an antioxidant used to counteract reactive oxygen species. Glutathione is produced by glutamylcysteine synthetase (GCS) and glutathione synthetase (GS). However, evidence for the GCS gene in sweetpotato remains scarce. In this study, the full-length cDNA sequence of IbGCS isolated from sweetpotato cultivar Xu18 was 1566 bp in length, which encodes 521 amino acids. The qRT-PCR analysis revealed a significantly higher expression of the IbGCS in sweetpotato flowers, and the gene was induced by salinity, abscisic acid (ABA), drought, extreme temperature and heavy metal stresses. The seed germination rate, root elongation and fresh weight were promoted in T3 Arabidopsis IbGCS-overexpressing lines (OEs) in contrast to wild type (WT) plants under mannitol and salt stresses. In addition, the soil drought and salt stress experiment results indicated that IbGCS overexpression in Arabidopsis reduced the malondialdehyde (MDA) content, enhanced the levels of GCS activity, GSH and AsA content, and antioxidant enzyme activity. In summary, overexpressing IbGCS in Arabidopsis showed improved salt and drought tolerance.

4.
World J Gastrointest Oncol ; 16(5): 2006-2017, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764815

ABSTRACT

BACKGROUND: N6-methyladenosine (m6A) modification represents the predominant alteration found in eukaryotic messenger RNA and plays a crucial role in the progression of various tumors. However, despite its significance, the comprehensive investigation of METTL5, a key m6A methyltransferase, in colorectal cancer (CRC) remains limited. AIM: To investigate the role of METTL5 in CRC. METHODS: We assessed METTL5 expression levels in clinical samples obtained from CRC patients as well as in CRC cell lines. To elucidate the downstream targets of METTL5, we performed RNA-sequencing analysis coupled with correlation analysis, leading us to identify Toll-like receptor 8 (TLR8) as a potential downstream target. In vitro functional assessments of METTL5 and TLR8 were conducted using CCK-8 assays, scratch assays, as well as assays measuring cell migration and invasion. RESULTS: Our findings reveal a pronounced upregulation of METTL5 expression in both CRC cells and tissues, which correlated significantly with an unfavorable prognosis. In vitro experiments unequivocally demonstrated the oncogenic role of METTL5, as evidenced by its promotion of CRC cell proliferation, invasion, and migration. Notably, we identified TLR8 as a downstream target of METTL5, and subsequent down-regulation of TLR8 led to a significant inhibition of CRC cell proliferation, invasion, and tumor growth. CONCLUSION: The heightened expression of METTL5 in CRC is strongly associated with clinicopathological features and a poor prognosis, thereby underscoring its potential utility as a critical marker for facilitating early diagnosis and prognostication in CRC.

5.
Viruses ; 16(4)2024 04 10.
Article in English | MEDLINE | ID: mdl-38675926

ABSTRACT

The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.


Subject(s)
Newcastle disease virus , Viral Proteins , Virus Replication , Newcastle disease virus/genetics , Newcastle disease virus/physiology , Newcastle disease virus/metabolism , Animals , Viral Proteins/metabolism , Viral Proteins/genetics , Nucleoproteins/metabolism , Nucleoproteins/genetics , Newcastle Disease/virology , Newcastle Disease/metabolism , Cell Line , Gene Expression Regulation, Viral , RNA, Viral/genetics , RNA, Viral/metabolism , Chickens , Virulence , Protein Binding , Mutation
7.
Small ; : e2310340, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456789

ABSTRACT

Chondrosarcoma(CS), a prevalent primary malignant bone tumor, frequently exhibits chemotherapy resistance attributed to upregulated anti-apoptosis pathways such as the Bcl-2 family. In this manuscript, a new strategy is presented to augment chemosensitivity and mitigate systemic toxicity by harnessing a nano-enabled drug delivery hydrogel platform. The platform utilizes "PLGA-PEG-PLGA", an amphiphilic triblock copolymer combining hydrophilic polyethylene glycol (PEG) and hydrophobic polylactide glycolide (PLGA) blocks, renowned for its properties conducive to crafting a biodegradable, temperature-sensitive hydrogel. This platform is tailored to encapsulate a ratiometrically designed dual-loaded liposomes containing a first-line chemo option for CS, Doxorubicin (Dox), plus a calculated amount of small molecule inhibitor for anti-apoptotic Bcl-2 pathway, ABT-737. In vitro and in vivo evaluations demonstrate successful Bcl-2 suppression, resulting in the restoration of Dox sensitivity, evident through impeded tumor growth and amplified necrosis rates at the tumor site. This delivery system showcases remarkable thermal responsiveness, injectability, and biodegradability, all finely aligned with the clinical demands of CS treatment. Collectively, this study introduces a transformative avenue for tackling drug resistance in CS chemotherapy, offering significant clinical potential.

8.
Org Lett ; 26(12): 2387-2392, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38488192

ABSTRACT

[2.2]Paracyclophane-fused heterocycles represent an important scaffold. Traditional approaches often suffer from tedious synthetic routes, and the development of catalytic synthesis of them remains in its infancy. Herein, by employing highly strained aryne intermediates as partners, we have developed a concise protocol by palladium-catalyzed C-H activation/annulation from [2.2]paracyclophanecarboxamide substrates. [2.2]Paracyclophane-fused quinolinone products are obtained in good yields (up to 84%). Furthermore, the utility of the process has been shown through the synthesis of [2.2]paracyclophane-fused heterocyclic catalysts.

9.
Org Lett ; 26(9): 1792-1796, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38415597

ABSTRACT

A mild and effective strategy for the asymmetric synthesis of C2-quaternary indolin-3-ones from 2-alkynyl arylazides and ketones by gold/chiral amine relay catalysis is described. In this reaction, 2-alkynyl arylazides undergo gold-catalyzed cyclization, nucleophilic attack, and oxidation to form intermediate 2-phenyl-3H-indol-3-ones, followed by an l-proline-catalyzed asymmetric Mannich reaction with ketones, to afford corresponding products in satisfactory yields with excellent enantio- and diastereoselectivities.

10.
Small ; : e2310387, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38312084

ABSTRACT

Rational design of heterostructure catalysts through phase engineering strategy plays a critical role in heightening the electrocatalytic performance of catalysts. Herein, a novel amorphous/crystalline (a/c) heterostructure (a-CoS/Ni3 S2 ) is manufactured by a facile hydrothermal sulfurization method. Strikingly, the interface coupling between amorphous phase (a-CoS) and crystalline phase (Ni3 S2 ) in a-CoS/Ni3 S2 is much stronger than that between crystalline phase (c-CoS) and crystalline phase (Ni3 S2 ) in crystalline/crystalline (c/c) heterostructure (c-CoS/Ni3 S2 ) as control sample, which makes the meta-stable amorphous structure more stable. Meanwhile, a-CoS/Ni3 S2 has more S vacancies (Sv ) than c-CoS/Ni3 S2 because of the presence of an amorphous phase. Eventually, for the oxygen evolution reaction (OER), the a-CoS/Ni3 S2 exhibits a significantly lower overpotential of 192 mV at 10 mA cm-2 compared to the c-CoS/Ni3 S2 (242 mV). An exceptionally low cell voltage of 1.51 V is required to achieve a current density of 50 mA cm-2 for overall water splitting in the assembled cell (a-CoS/Ni3 S2 || Pt/C). Theoretical calculations reveal that more charges transfer from a-CoS to Ni3 S2 in a-CoS/Ni3 S2 than in c-CoS/Ni3 S2 , which promotes the enhancement of OER activity. This work will bring into play a fabrication strategy of a/c catalysts and the understanding of the catalytic mechanism of a/c heterostructures.

11.
J Exp Clin Cancer Res ; 43(1): 44, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326863

ABSTRACT

BACKGROUND: m6A modification is currently recognized as a major driver of RNA function that maintains cancer cell homeostasis. Long non-coding (Lnc) RNAs control cell proliferation and play an important role in the occurrence and progression of colorectal cancer (CRC). ZCCHC4 is a newly discovered m6A methyltransferase whose role and mechanism in tumors have not yet been elucidated. METHODS: The EpiQuik m6A RNA methylation kit was used to detect the level of total RNA m6A in six types of digestive tract tumors. The Kaplan-Meier method and receiver operating characteristic curve were used to evaluate the prognostic and diagnostic value of the newly discovered m6A methyltransferase, ZCCHC4, in CRC. The effects on CRC growth in vitro and in vivo were studied using gain- and loss-of-function experiments. The epigenetic mechanisms underlying ZCCHC4 upregulation in CRC were studied using RIP, MeRIP-seq, RNA pull-down, and animal experiments. RESULTS: We reported that the ZCCHC4-LncRNAGHRLOS-KDM5D axis regulates the growth of CRC in vitro and in vivo. We found that ZCCHC4 was upregulated in primary CRC samples and could predict adverse clinical outcomes in patients with CRC. Mechanistically, ZCCHC4 downregulated LncRNAGHRLOS to promote CRC tumorigenesis. As a downstream molecule of LncRNAGHRLOS, KDM5D directly controls CRC cell proliferation, migration, and invasion. CONCLUSION: This study suggests that the ZCCHC4 axis contributes to the tumorigenesis and progression of CRC and that ZCCHC4 may be a potential biomarker for this malignancy.


Subject(s)
Adenine , Colorectal Neoplasms , RNA, Long Noncoding , Animals , Humans , Adenine/analogs & derivatives , Carcinogenesis/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/pathology , Down-Regulation , Epigenesis, Genetic , Histone Demethylases/genetics , Methyltransferases/metabolism , Minor Histocompatibility Antigens , RNA , RNA, Long Noncoding/genetics , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
12.
Cell Death Dis ; 15(1): 6, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177123

ABSTRACT

Glioma cell sensitivity to temozolomide (TMZ) is critical for effective treatment and correlates with patient survival, although mechanisms underlying this activity are unclear. Here, we reveal a new mechanism used by glioma cells to modulate TMZ sensitivity via regulation of SORBS2 and DDR1 genes by super-enhancer RNA LINC02454. We report that LINC02454 activity increases glioma cell TMZ sensitivity by maintaining long-range chromatin interactions between SORBS2 and the LINC02454 enhancer. By contrast, LINC02454 activity also decreased glioma cell TMZ sensitivity by promoting DDR1 expression. Our study suggests a bivalent function for super-enhancer RNA LINC02454 in regulating glioma cell sensitivity to TMZ.


Subject(s)
Brain Neoplasms , Glioma , MicroRNAs , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Enhancer RNAs , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , MicroRNAs/genetics , Cell Proliferation , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
13.
Polymers (Basel) ; 16(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38256985

ABSTRACT

The utilization of titanium dioxide (TiO2) as a photocatalyst for the treatment of wastewater has attracted significant attention in the environmental field. Herein, we prepared an NH2-MIL-125-derived N-doped TiO2@C Visible Light Catalyst through an in situ calcination method. The nitrogen element in the organic connector was released through calcination, simultaneously doping into the sample, thereby enhancing its spectral response to cover the visible region. The as-prepared N-doped TiO2@C catalyst exhibited a preserved cage structure even after calcination, thereby alleviating the optical shielding effect and further augmenting its photocatalytic performance by increasing the reaction sites between the catalyst and pollutants. The calcination time of the N-doped TiO2@C-450 °C catalyst was optimized to achieve a balance between the TiO2 content and nitrogen doping level, ensuring efficient degradation rates for basic fuchsin (99.7%), Rhodamine B (89.9%) and tetracycline hydrochloride (93%) within 90 min. Thus, this study presents a feasible strategy for the efficient degradation of pollutants under visible light.

14.
J Am Chem Soc ; 146(3): 2257-2266, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38195401

ABSTRACT

Metallic Al has been deemed an ideal electrode material for aqueous batteries by virtue of its abundance and high theoretical capacity (8056 mAh cm-3). However, the development of aqueous Al metal batteries has been hindered by several side reactions, including water decomposition, Al corrosion, and passivation, which arise from the solvation reaction of Al and H2O in conventional aqueous electrolytes. In this work, we report that water activity in electrolyte can be suppressed by optimizing the Al3+ solvation structure through intercalation of polar pyridine-3-carboxylic acid in an aluminum trifluoromethanesulfonate aqueous environment. Furthermore, the pyridine-3-carboxylic acid molecules are inclined to alter the surface energy of Al, thus suppressing the random deposition of Al. As a result, the Al corrosion in the hybrid electrolyte is restrained, and the long-term electrochemical stability of the electrolyte is tremendously improved. These merits bring remarkable reversibility to aqueous Al batteries using Al-preintercalated MnO2 cathodes, delivering a retaining energy density of >250 Wh kg-1 at 0.2 A g-1 after 600 cycles.

15.
Heliyon ; 10(1): e23917, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38192793

ABSTRACT

Background: Milk Fat Globule-Epidermal Growth Factor 8 (MFG-E8) has been reported to play an oncogenic role in a variety of tumors. However, its involvement in gastric cancer (GC) development has not been described. Methods: The cancer genome atlas (TCGA) and the gene expression omnibus database (GEO) databases were used to analyze the expression of MFG-E8 in GC. These findings were further validated using immunohistochemistry (IHC) and western blotting assay (WB). Kaplan-Meier method, univariate logistic regression, and Christopher Cox regression were used to study the relationship between MFG-E8 and clinical pathology. In addition, the potential signaling pathways involved in MFG-E8 and its potential correlation with levels of immune cell infiltration were investigated. Finally, the biological function of MFG-E8 in GC cells was revealed. Results: MFG-E8 was highly expressed in GC patients and cells, and the high level of MFG-E8 was associated with poor overall survival (OS). KEGG analysis indicated that MFG-E8 may play an important role in the cAMP signaling pathway. The expression of MFG-E8 was positively correlated with the infiltration of M2 macrophages. The patients with high MFG-E8 were easy to develop chemotherapy resistance. Furthermore, the knockdown of MFG-E8 significantly inhibited the proliferation and invasion of GC cells. Conclusion: MFG-E8 in GC may serve as a prognostic marker and a potential immunotherapy target for GC.

16.
Huan Jing Ke Xue ; 45(1): 354-363, 2024 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-38216485

ABSTRACT

It is of great scientific significance in regulating plantation ecosystem restoration to investigate the effects of the nitrogen (N) deposition and litter manipulation on soil organic carbon components and enzyme activities. A micro-plot experiment was conducted with four nitrogen additions[CK (0 kg·hm-2·a-1, calculated by N), LN (50 kg·hm-2·a-1), MN (100 kg·hm-2·a-1), and HN (200 kg·hm-2·a-1)] and two litter treatments[LR (litter removal) and L (litter retained)] for tropical rubber plantations in western Hainan Island. The soil physico-chemical properties, soil organic carbon components, and enzyme activities in 0-10 cm and 10-20 cm depths were analyzed. The results showed that soil pH significantly decreased with elevated N addition and litter removal. The contents of NO3--N and NH4+-N significantly increased with elevated N addition. Moreover, there was a significant interaction between N addition and litter treatment on the contents of NO3--N and NH4+-N (P < 0.05). Compared to that with L, LR reduced SOC and its component contents; particularly, the largest decrease was in LFOC by 29.0%-81.4% in the 0-10 cm depth and 23.5%-58.4% in 10-20 cm, respectively. The contents of SOC and its components presented a trend of increasing first and then decreasing with elevated N addition irrespective of litter treatment, and those contents were significantly higher at LN than those at HN. There was a significant interaction between N addition and litter treatment on SOC, LFOC (0-10 cm), and HFOC contents. Compared with that under L, PPO activity was significantly reduced at LR under CK and LN but was significantly increased at LR under MN and HN, respectively. Variance analysis showed significant interactive effects between N addition and litter treatment on PPO and CBH (0-10 cm) activities, and the soil enzyme activity (BG, PPO, and CBH) responding to N addition was greater than that to the litter treatment. Pearson correlation analysis showed that SOC content was extremely positively correlated with MBC, POC, LFOC, and HFOC contents. To summarize, litter retained combined with low N deposition played an important synergistic role of improving SOC pool and soil enzyme activities for tropical rubber plantation systems.


Subject(s)
Carbon , Soil , Soil/chemistry , Carbon/analysis , Rubber , Ecosystem , Nitrogen/analysis , China
17.
J Integr Plant Biol ; 66(2): 176-195, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38294064

ABSTRACT

Sweet potato (Ipomoea batatas [L.] Lam.) is a crucial staple and bioenergy crop. Its abiotic stress tolerance holds significant importance in fully utilizing marginal lands. Transcriptional processes regulate abiotic stress responses, yet the molecular regulatory mechanisms in sweet potato remain unclear. In this study, a NAC (NAM, ATAF1/2, and CUC2) transcription factor, IbNAC087, was identified, which is commonly upregulated in salt- and drought-tolerant germplasms. Overexpression of IbNAC087 increased salt and drought tolerance by increasing jasmonic acid (JA) accumulation and activating reactive oxygen species (ROS) scavenging, whereas silencing this gene resulted in opposite phenotypes. JA-rich IbNAC087-OE (overexpression) plants exhibited more stomatal closure than wild-type (WT) and IbNAC087-Ri plants under NaCl, polyethylene glycol, and methyl jasmonate treatments. IbNAC087 functions as a nuclear transcriptional activator and directly activates the expression of the key JA biosynthesis-related genes lipoxygenase (IbLOX) and allene oxide synthase (IbAOS). Moreover, IbNAC087 physically interacted with a RING-type E3 ubiquitin ligase NAC087-INTERACTING E3 LIGASE (IbNIEL), negatively regulating salt and drought tolerance in sweet potato. IbNIEL ubiquitinated IbNAC087 to promote 26S proteasome degradation, which weakened its activation on IbLOX and IbAOS. The findings provide insights into the mechanism underlying the IbNIEL-IbNAC087 module regulation of JA-dependent salt and drought response in sweet potato and provide candidate genes for improving abiotic stress tolerance in crops.


Subject(s)
Cyclopentanes , Ipomoea batatas , Oxylipins , Sodium Chloride , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Drought Resistance , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Droughts , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
18.
Adv Mater ; 36(12): e2209460, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36638501

ABSTRACT

Water-based evaporative cooling is emerging as a promising technology to provide sustainable and low-cost cold to alleviate the rising global cooling demand. Given the significant and fast progress made in recent years, this review aims to provide a timely overview on the state-of-the-art material design and engineering in water-based evaporative cooling. The fundamental mechanisms and major components of three water-based evaporative cooling processes are introduced, including direct evaporative cooling, cyclic sorption-driven liquid water evaporative cooling (CSD-LWEC), and atmospheric water harvesting-based evaporative cooling (AWH-EC). The distinctive requirements on the sorbent materials in CSD-LWEC and AWH-EC are highlighted, which helps synthesize the literature information on the advanced material design and engineering for the purpose of improving cooling performance. The challenges and future outlooks on further improving the water-based evaporative cooling performance are also provided.

19.
Bioorg Med Chem ; 97: 117539, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38070351

ABSTRACT

A series of 1-(2-oxocyclohexyl)butane-1, 3-dione derivatives were designed and synthesized as TLR4 inhibitors by modifying the core structure of the lead compound ((6, 8-dioxo-1, 2, 3, 4, 6, 7, 8, 8a-octahydronaphthalen-2-yl) carbamate)). In vitro, compound 3p significantly inhibited the proliferation of rat synovial cells, inhibited the proliferation of LPS-induced RAW264.7 cells, and inhibited TLR4 activity, with IC50 values of 1.21 ± 0.09 µM, 0.73 ± 0.05 µM and 0.43 ± 0.03 µM, respectively, which was superior to the positive control methotrexate. In vivo anti-rheumatoid arthritis evaluation, compound 3p can significantly inhibit the inflammatory factors TNF-α, IL-1ß and IL-6, so as to achieve the therapeutic purpose. In the preliminary mechanism study, compound 3p has obvious regulatory effects on the abnormal increase of TLR4, JAK2 and STAT3 protein and gene expression related to inflammatory signaling pathway in RAW264.7 cells. In summary, this study aims to develop more effective candidates for rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid , Synoviocytes , Rats , Animals , Toll-Like Receptor 4/genetics , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Synoviocytes/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/metabolism
20.
Sci Bull (Beijing) ; 69(2): 183-189, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38057234

ABSTRACT

In correlated oxides, collaborative manipulation on light intensity, wavelength, pulse duration and polarization has yielded many exotic discoveries, such as phase transitions and novel quantum states. In view of potential optoelectronic applications, tailoring long-lived static properties by light-induced effects is highly desirable. So far, the polarization state of light has rarely been reported as a control parameter for this purpose. Here, we report polarization-dependent metal-to-insulator transition (MIT) in phase-separated manganite thin films, introducing a new degree of freedom to control static MIT. Specifically, we observed giant photoinduced resistance jumps with striking features: (1) a single resistance jump occurs upon a linearly polarized light incident with a chosen polarization angle, and a second resistance jump occurs when the polarization angle changes; (2) the amplitude of the second resistance jump depends sensitively on the actual change of the polarization angles. Linear transmittance measurements reveal that the origin of the above phenomena is closely related to the coexistence of anisotropic micro-domains. Our results represent a first step to utilize light polarization as an active knob to manipulate static phase transitions, pointing towards new pathways for nonvolatile optoelectronic devices and sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...