Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 659
Filter
1.
Food Res Int ; 188: 114352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823826

ABSTRACT

In the ongoing quest to formulate sensory-rich, low-fat products that maintain structural integrity, this work investigated the potential of bigels, especially those created using innovative Pickering techniques. By harnessing the unique properties of whey protein isolate (WPI) and whey protein microgel (WPM) as interfacial stabilizers, WPM-based Pickering bigels exhibited a remarkable particle localization at the interface due to specific intermolecular interactions. The rise in protein concentration not only intensified particle coverage and interface stabilization but also amplified attributes like storage modulus, yield stress, and adhesiveness, owing to enhanced intermolecular forces and a compact gel matrix. Impressively, WPM-based Pickering bigels outshone in practical applications, showcasing exceptional oil retention during freeze-thaw cycles and extended flavor release-a promising indication for frozen food product applications. Furthermore, these bigels underwent a sensory evolution from a lubricious texture at lower concentrations to a stable plateau at higher ones, offering an enriched consumer experience. In a comparative digestibility assessment, WPM-based Pickering bigels demonstrated superior prowess in decelerating the release of free fatty acids, indicating slowed lipid digestion. This study demonstrates the potential to fine-tune oral sensations and digestive profiles in bigels by modulating Pickering particle concentrations.


Subject(s)
Digestion , Microgels , Taste , Whey Proteins , Whey Proteins/chemistry , Humans , Microgels/chemistry , Food Handling/methods , Gastrointestinal Tract/metabolism , Sensation
2.
Article in English | MEDLINE | ID: mdl-38739182

ABSTRACT

Neurofeedback training (NFT) is a promising adjuvant intervention method. The desynchronization of mu rhythm (8-13 Hz) in the electroencephalogram (EEG) over centro-parietal areas is known as a valid indicator of mirror neuron system (MNS) activation, which has been associated with social skills. Still, the effect of neurofeedback training on the MNS requires to be well investigated. The present study examined the possible impact of NFT with a mu suppression training protocol encompassing 15 NFT sessions (45 min each) on 16 healthy neurotypical participants. In separate pre- and post-training sessions, 64-channel EEG was recorded while participants (1) observed videos with various types of movements (including complex goal-directed hand movements and social interaction scenes) and (2) performed the "Reading the Mind in the Eyes Test" (RMET). EEG source reconstruction analysis revealed statistically significant mu suppression during hand movement observation across MNS-attributed fronto-parietal areas after NFT. The frequency analysis showed no significant mu suppression after NFT, despite the fact that numerical mu suppression appeared to be visible in a majority of participants during goal-directed hand movement observation. At the behavioral level, RMET accuracy scores did not suggest an effect of NFT on the ability to interpret subtle emotional expressions, although RMET response times were reduced after NFT. In conclusion, the present study exhibited preliminary and partial evidence that mu suppression NFT can induce mu suppression in MNS-attributed areas. More powerful experimental designs and longer training may be necessary to induce substantial and consistent mu suppression, particularly while observing social scenarios.

3.
Article in English | MEDLINE | ID: mdl-38702162

ABSTRACT

Objective: NHISS score, MMSE scale, craniocerebral CTA or DSA, and craniocerebral magnetic resonance 3D-ASL were used to evaluate the efficacy and safety of superficial temporal artery-middle cerebral artery (STA-MCA) shunt combined with cranial-muscular-merging (EMS) in the treatment of symptomatic chronic internal carotid artery occlusion. Methods: The purpose of this study was to retrospectively analyze the clinical data of 15 patients with symptomatic chronic internal carotid artery occlusion who received STA-MCA shunt combined with EMS treatment at Weifang Brain Hospital and Weifang Traditional Chinese Medicine Hospital from July 2016 to December 2020. The patients' neurological and cognitive functions were evaluated by NHISS score and MMSE examination before surgery and 6 months after surgery. Adverse reactions after surgery were observed, and preoperative and postoperative cerebral hemodynamics, the patency of the shunt anastomosis, and the compensation of collateral circulation were evaluated by cranial CTA or DSA and cranial MRI 3D-ASL. Results: All 15 patients underwent successful surgery. One patient experienced transient mild cerebral hyperperfusion syndrome postoperatively. Six months after surgery, the NHISS score was significantly improved compared with that before surgery (P = .0001), and the MMSE score was also significantly improved compared with before surgery (P = .0124). No adverse events of poor scalp healing, intracranial infection, subcutaneous fluid accumulation, subdural hematoma, or cerebral hemorrhage were observed postoperatively. Imaging examination showed that the shunt vessels were unobstructed, the middle cerebral artery was dilated, collateral circulation in the surgical area was increased, and cerebral blood flow increased. Conclusion: STA-MCA shunt combined with EMS treatment is safe and effective for symptomatic chronic internal carotid artery occlusion. It has the potential to improve cerebral blood flow and reduce clinical symptoms.

4.
Chem Asian J ; : e202400211, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709109

ABSTRACT

The growing demand for wearable electronics has driven the development of flexible thermoelectric (TE) generators which can harvest waste body heat as a renewable power source. Despite carbon nanotube (CNT) yarns have attracted significant attention as a promising candidate for TE materials, challenges still exist in improving their TE efficiency for commercial applications. Herein, we developed high performance CNT/polyaniline (PANI) yarns by engineering the coating of polyaniline emeraldine base (PANIeb), in which CNT yarns were firstly coated by PANIeb layer and further doped by HCl vapor treatment. With the incorporation of PANIeb, σ and S were simultaneously increased to 1796 S cm-1 and 74.8 µV K-1 for CNT/PANIeb 4-2d fibers, respectively. Further HCl vapor treatment induced greatly increased σ to 3194 S cm-1, but maintained be 83 % value before doping, giving rise to the highest power factor of 1224 µW m-1K-2, higher than pristine CNT yarns of 576 µW m-1K-2. Combining outstanding high TE performance and bending durability, a flexible TE generator was constructed to deliver high out power of 187 nW with temperature gradients of about 30 K. These results demonstrate the potential promise of high-performance CNT/PANI-HCl yarns to harvest waste body heat for sustainable power supply.

5.
Cogn Sci ; 48(5): e13452, 2024 05.
Article in English | MEDLINE | ID: mdl-38742272

ABSTRACT

Slower perceptual alternations, a notable perceptual effect observed in psychiatric disorders, can be alleviated by antidepressant therapies that affect serotonin levels in the brain. While these phenomena have been well documented, the underlying neurocognitive mechanisms remain to be elucidated. Our study bridges this gap by employing a computational cognitive approach within a Bayesian predictive coding framework to explore these mechanisms in depression. We fitted a prediction error (PE) model to behavioral data from a binocular rivalry task, uncovering that significantly higher initial prior precision and lower PE led to a slower switch rate in patients with depression. Furthermore, serotonin-targeting antidepressant treatments significantly decreased the prior precision and increased PE, both of which were predictive of improvements in the perceptual alternation rate of depression patients. These findings indicated that the substantially slower perception switch rate in patients with depression was caused by the greater reliance on top-down priors and that serotonin treatment's efficacy was in its recalibration of these priors and enhancement of PE. Our study not only elucidates the cognitive underpinnings of depression, but also suggests computational modeling as a potent tool for integrating cognitive science with clinical psychology, advancing our understanding and treatment of cognitive impairments in depression.


Subject(s)
Bayes Theorem , Depression , Humans , Male , Female , Adult , Visual Perception , Antidepressive Agents/therapeutic use , Serotonin/metabolism , Middle Aged
6.
Small ; : e2403130, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751304

ABSTRACT

Polycrystalline yttrium aluminum garnet (YAG) ceramic doped with neodymium (Nd), referred to as Nd:YAG, is widely used in solid-state lasers. However, conventional powder metallurgy methods suffer from expenses, time consumption, and limitations in customizing structures. This study introduces a novel approach for creating Nd:YAG ceramics with 3D free-form structures from micron (∼70 µm) to centimeter scales. Firstly, sol-gel synthesis is employed to form photocurable colloidal solutions. Subsequently, by utilizing a home-built micro-continuous liquid interface printing process, precursors are printed into 3D poly(acrylic acid) hydrogels containing yttrium, aluminum, and neodymium hydroxides, with a resolution of 5.8 µm pixel-1 at a speed of 10 µm s-1. After the hydrogels undergo thermal dehydration, debinding, and sintering, polycrystalline Nd:YAG ceramics featuring distinguishable grains are successfully produced. By optimizing the concentrations of the sintering aids (tetraethyl orthosilicate) and neodymium trichloride (NdCl3), the resultant samples exhibit satisfactory photoluminescence, emitting light concentrated at 1064 nm when stimulated by a 532 nm laser. Additionally, Nd:YAG ceramics with various 3D geometries (e.g., cone, spiral, and angled pillar) are printed and characterized, which demonstrates the potential for applications, such as laser and amplifier fibers, couplers, and splitters in optical circuits, as well as gain metamaterials or metasurfaces.

7.
Arch Med Sci ; 20(2): 602-611, 2024.
Article in English | MEDLINE | ID: mdl-38757032

ABSTRACT

Introduction: Chondrocyte apoptosis as a prominent characteristic is usually accompanied by cartilage degeneration in osteoarthritis (OA). Herein, we aimed to determine the roles of miR-149-5p in tumor necrosis factor-α (TNF-α)-induced chondrocyte apoptosis. Material and methods: Human chondrocytes were cultured with TNF-α to establish an apoptosis cell model in vitro. After transfection with miR-149-5p mimics or co-expression with TRADD in chondrocytes, cell viability, apoptosis, inflammatory cytokines, mRNA and protein expression were measured using CCK8, Annexin V-FITC double staining, ELISA assays, RT-qPCR and western blotting, respectively. Results: TNF-α-induced chondrocyte apoptosis occurred in association with the inhibition of cell proliferation, the elevation of inflammatory cytokine levels and the activation of TRADD and caspase-3/8 signaling. The post-transcriptional regulatory mechanism suggested that TRADD was a direct target of miR-149-5p, and overexpression of miR-149-5p resulted in the down-regulation of TRADD protein expression in chondrocytes. In addition, miR-149-5p mimics had the ability to attenuate TNF-α-induced inflammation and apoptosis, while transfection with TRADD vector neutralized the protective effects of miR-149-5p on TNF-α-induced chondrocyte dysfunction. Conclusions: miR-149-5p inversely regulated TNF-α-mediated chondrocyte damage by inhibiting TRADD-modulated caspases signaling. The miR-149-5p/TRADD signaling pathway might be a promising therapeutic target for the treatment of OA.

8.
Micromachines (Basel) ; 15(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38793168

ABSTRACT

The pigeon robot has attracted significant attention in the field of animal robotics thanks to its outstanding mobility and adaptive capability in complex environments. However, research on pigeon robots is currently facing bottlenecks, and achieving fine control over the motion behavior of pigeon robots through brain-machine interfaces remains challenging. Here, we systematically quantify the relationship between electrical stimulation and stimulus-induced motion behaviors, and provide an analytical method to demonstrate the effectiveness of pigeon robots based on electrical stimulation. In this study, we investigated the influence of gradient voltage intensity (1.2-3.0 V) on the indoor steering motion control of pigeon robots. Additionally, we discussed the response time of electrical stimulation and the effective period of the brain-machine interface. The results indicate that pigeon robots typically exhibit noticeable behavioral responses at a 2.0 V voltage stimulus. Increasing the stimulation intensity significantly controls the steering angle and turning radius (p < 0.05), enabling precise control of pigeon robot steering motion through stimulation intensity regulation. When the threshold voltage is reached, the average response time of a pigeon robot to the electrical stimulation is 220 ms. This study quantifies the role of each stimulation parameter in controlling pigeon robot steering behavior, providing valuable reference information for the precise steering control of pigeon robots. Based on these findings, we offer a solution for achieving precise control of pigeon robot steering motion and contribute to solving the problem of encoding complex trajectory motion in pigeon robots.

9.
Materials (Basel) ; 17(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38793514

ABSTRACT

Co-condensation of mixed SiGe nanoclusters and impingement of SiGe nanoclusters on a Si substrate were applied using molecular dynamics (MD) simulation in this study to mimic the fast epitaxial growth of SiGe/Si heterostructures under mesoplasma chemical vapor deposition (CVD) conditions. The condensation dynamics and properties of the SiGe nanoclusters during the simulations were investigated first, and then the impingement of transient SiGe nanoclusters on both Si smooth and trench substrate surfaces under varying conditions was studied theoretically. The results show that the mixed nanoclusters as precursors demonstrate potential for enhancing epitaxial SiGe film growth at a high growth rate, owing to their loosely bound atomic structures and high mobility on the substrate surface. By varying cluster sizes and substrate temperatures, this study also reveals that smaller clusters and higher substrate temperatures contribute to faster structural ordering and smoother surface morphologies. Furthermore, the formed layers display a consistent SiGe composition, closely aligning with nominal values, and the cluster-assisted deposition method achieves the epitaxial bridging of heterostructures during cluster impingement, highlighting its additional distinctive characteristics. The implications of this work make it clear that the mechanism of fast alloyed epitaxial film growth by cluster-assisted mesoplasma CVD is critical for extending it as a versatile platform for synthesizing various epitaxial films.

11.
Cortex ; 175: 54-65, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704919

ABSTRACT

The dorsal attention network (DAN) is a network of brain regions essential for attentional orienting, which includes the lateral intraparietal area (LIP) and frontal eye field (FEF). Recently, the putative human dorsal posterior infero-temporal area (phPITd) has been identified as a new node of the DAN. However, its functional relationship with other areas of the DAN and its specific role in visual attention remained unclear. In this study, we analyzed a large publicly available neuroimaging dataset to investigate the intrinsic functional connectivities (FCs) of the phPITd with other brain areas. The results showed that the intrinsic FCs of the phPITd with the areas of the visual network and the DAN were significantly stronger than those with the ventral attention network (VAN) areas and areas of other networks. We further conducted individual difference analyses with a sample size of 295 participants and a series of attentional tasks to investigate which attentional components each phPITd-based DAN edge predicts. Our findings revealed that the intrinsic FC of the left phPITd with the LIPv could predict individual ability in attentional orienting, but not in alerting, executive control, and distractor suppression. Our results not only provide direct evidence of the phPITd's functional relationship with the LIPv, but also offer a comprehensive understanding of its specific role in visual attention.


Subject(s)
Attention , Brain Mapping , Magnetic Resonance Imaging , Temporal Lobe , Visual Perception , Humans , Attention/physiology , Male , Female , Adult , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Young Adult , Magnetic Resonance Imaging/methods , Visual Perception/physiology , Orientation/physiology , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Nerve Net/physiology , Nerve Net/diagnostic imaging
12.
J Colloid Interface Sci ; 670: 709-718, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38788438

ABSTRACT

The production of hydrogen through seawater electrolysis has recently garnered increasing concern. However, hydrogen evolution reaction (HER) by alkaline seawater electrocatalysis is severely impeded by the slow H2O adsorption and H* binding kinetics at industrial current densities. Herein, a face-centered cubic/hexagonal close packed (fcc/hcp) NiRu alloy heterojunction was fabricated on Ni foam (N doped NiRu-inf/NF) by a low-temperature nitrogen plasma activation. Simultaneously, nitrogen atoms are introduced into the alloy to facilitate d-p hybridization. When N doped NiRu-inf/NF is integrated into a dual-electrode cell for urea-assisted seawater electrolysis, it achieves 100 mA cm-2 with an ultra-low voltage of 1.36 V and excellent stability. Density functional theory (DFT) verifies that the robust d-p hybridization among Ni, Ru and N exhibits more energy level matching for H2O molecule adsorption at the Ru sites, while simultaneously reducing the interaction between H* and Ni sites in N-doped NiRu-inf.

13.
BMC Microbiol ; 24(1): 189, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811884

ABSTRACT

BACKGROUND: The study aims to analyze the epidemiology of preservation fluid (PF) contamination and investigate the impact of PF contamination and possible donor-derived infections(p-DDI) on early postoperative prognosis in kidney transplant (KT) recipients. METHODS: A total of 256 PF samples were collected for microbiological evaluation from all KT recipients who received deceased donor donations in our hospital from June 2018 to August 2022. Data on the baseline and clinical characteristics of these PF corresponding to recipients and donors were extracted from the electronic medical record. It mainly included the early postoperative complications and prognosis of KT recipients. RESULTS: From June 2018 to August 2022, 597 kidney transplants were performed in our center, with 260 recipients receiving kidney transplantation from donation after citizens' death. A total of 256 samples of PF were collected, of which 64.5% (165/256) were culture positive, and 24.6% (63/165) of the culture-positive PF were polymicrobial contamination. A total of 238 strains were isolated, of which coagulase-negative staphylococci (CoNS) had the highest proportion of 34.0% (81/238), followed by Klebsiella pneumoniae with 20.6% (49/238) and Escherichia coli with 8.8% (21/238). Recipients with culture-positive PF had a significantly higher incidence of postoperative infection (55.8% vs. 20.9%, P < 0.001) and DGF (38.2% vs. 24.2%, P = 0.023). In addition, the incidence of p-DDI was 12.9% (33/256). CRKP was the most common pathogen causing p-DDI. The recipients who developed p-DDI had a higher rate of graft loss (9.1% vs. 0.4%, P < 0.001), mortality (12.1% vs. 3.1%, P = 0.018), and longer postoperative hospital stay (30 days (19.5-73.5) vs. (22 days (18-32), P < 0.05) compared with recipients who did not develop p-DDI. CONCLUSIONS: Culture-positive PF is potentially significant for KT recipients, and p-DDI may increase the risk of poor prognosis for recipients. Prophylactic anti-infective treatment should be actively performed for highly virulent or multidrug-resistant (MDR) pathogens (especially Carbapenem-resistant Klebsiella pneumoniae, CRKP) in PF to avoid the occurrence of p-DDI.


Subject(s)
Kidney Transplantation , Organ Preservation Solutions , Tissue Donors , Humans , Kidney Transplantation/adverse effects , Male , Female , Middle Aged , Adult , Prognosis , Postoperative Complications/microbiology , Postoperative Complications/epidemiology , Transplant Recipients/statistics & numerical data , Retrospective Studies , Aged , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
14.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727360

ABSTRACT

Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of "structure optimization design", environment-friendly composite beads (named SA/PASP/RE) with excellent adsorption performance and recyclability were rationally constructed through a green ionic crosslinking route, using the completely green biopolymer sodium alginate (SA), sodium salt of polyaspartic acid (PASP), and the natural nanoclay rectorite (RE) as starting materials. The nano-layered RE was embedded in the polymer matrix to prevent the polymer chain from becoming over-entangled so that more adsorption sites inside the polymer network were exposed, which effectively improved the mass transfer efficiency of the adsorbent and the removal rate of contaminants. The composite beads embedded with 0.6% RE showed high adsorption capacities of 211.78, 197.13, and 195.69 mg/g for Pb(II) and 643.00, 577.80, and 567.10 mg/g for methylene blue (MB) in Yellow River water, Yangtze River water, and tap water, respectively. And the beads embedded with 43% RE could efficiently adsorb Pb(II) and MB with high capacities of 187.78 mg/g and 586.46 mg/g, respectively. This study provides a new route to design and develop a green, cost-effective, and efficient adsorbent for the decontamination of wastewater.

15.
Curr Res Food Sci ; 8: 100737, 2024.
Article in English | MEDLINE | ID: mdl-38681525

ABSTRACT

Vegetable and fruit classification can help all links of agricultural product circulation to better carry out inventory management, logistics planning and supply chain coordination, and improve the efficiency and response speed of the supply chain. However, the current classification of vegetables and fruits mainly relies on manual classification, which inevitably introduces the influence of human subjective factors, resulting in errors and misjudgments in the classification of vegetables and fruits. In response to this serious problem, this research proposes an efficient and reproducible novel model to classify multiple vegetables and fruits using handcrafted features. In the proposed model, preprocessing operations such as Gaussian filtering, grayscale and binarization are performed on the pictures of vegetables and fruits to improve the quality of the pictures; statistical texture features representing vegetable and fruit categories, wavelet transform features and shape features are extracted from the preprocessed images; the feature dimension reduction method of diffusion maps is used to reduce the redundant information of the combined features composed of statistical texture features, wavelet transform features and shape features; five effective machine learning methods were used to classify the types of vegetables and fruits. In this research, the proposed method was rigorously verified experimentally and the results show that the SVM classifier achieves 96.25% classification accuracy of vegetables and fruits, which proves that the proposed method is helpful to improve the quality and management level of vegetables and fruits, and provide strong support for agricultural production and supply chain.

16.
Microorganisms ; 12(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38674619

ABSTRACT

Cefotaxime (CTX) is an easily detectable antibiotic pollutant in the water environment, but little is known about its toxic effects on aquatic invertebrates, especially on the intestine. Here, we determined the oxidative stress conditions of A. sinica under CTX exposure with five concentrations (0, 0.001, 0.01, 0.1 and 1 mg/L) for 14 days. After that, we focused on changes in intestinal tissue morphology and gut microbiota in A. sinica caused by CTX exposure at 0.01 mg/L. We found malondialdehyde (MDA) was elevated in CTX treatment groups, suggesting the obvious antibiotic-induced oxidative stress. We also found CTX exposure at 0.01 mg/L decreased the villus height and muscularis thickness in gut tissue. The 16S rRNA gene analysis indicated that CTX exposure reshaped the gut microbiota diversity and community composition. Proteobacteria, Actinobacteriota and Bacteroidota were the most widely represented phyla in A. sinica gut. The exposure to CTX led to the absence of Verrucomicrobia in dominant phyla and an increase in Bacteroidota abundance. At the genus level, eleven genera with an abundance greater than 0.1% exhibited statistically significant differences among groups. Furthermore, changes in gut microbiota composition were accompanied by modifications in gut microbiota functions, with an up-regulation in amino acid and drug metabolism functions and a down-regulation in xenobiotic biodegradation and lipid metabolism-related functions under CTX exposure. Overall, our study enhances our understanding of the intestinal damage and microbiota disorder caused by the cefotaxime pollutant in aquatic invertebrates, which would provide guidance for healthy aquaculture.

17.
Sci Adv ; 10(16): eadk7695, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640236

ABSTRACT

Preclinical studies have shown that immunostimulatory cytokines elicit antitumor immune responses but their clinical use is limited by severe immune-related adverse events upon systemic administration. Here, we report a facile and versatile strategy for noncovalently anchoring potent Fc-fused cytokine molecules to the surface of size-discrete particles decorated with Fc-binding peptide for local administration. Following intratumoral injection, particle-anchored Fc cytokines exhibit size-dependent intratumoral retention. The 1-micrometer particle prolongs intratumoral retention of Fc cytokine for over a week and has minimal systemic exposure, thereby eliciting antitumor immunity while eliminating systemic toxicity caused by circulating cytokines. In addition, the combination of these particle-anchored cytokines with immune checkpoint blockade antibodies safely promotes tumor regression in various syngeneic tumor models and genetically engineered murine tumor models and elicits systemic antitumor immunity against tumor rechallenge. Our formulation strategy renders a safe and tumor-agnostic approach that uncouples cytokines' immunostimulatory properties from their systemic toxicities for potential clinical application.


Subject(s)
Cytokines , Neoplasms , Mice , Animals , Immunotherapy , Neoplasms/drug therapy , Antibodies , Cell Line, Tumor
19.
Mol Cancer ; 23(1): 70, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576002

ABSTRACT

BACKGROUND: Cellular senescence frequently occurs during anti-cancer treatment, and persistent senescent tumor cells (STCs) unfavorably promote tumor progression through paracrine secretion of the senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs) have recently emerged as a novel component of the SASP and primarily mediate the tumor-promoting effect of the SASP. Of note, the potential effect of EVs released from STCs on tumor progression remains largely unknown. METHODS: We collected tumor tissues from two cohorts of colorectal cancer (CRC) patients to examine the expression of p16, p21, and SERPINE1 before and after anti-cancer treatment. Cohort 1 included 22 patients with locally advanced rectal cancer (LARC) who received neoadjuvant therapy before surgical resection. Cohort 2 included 30 patients with metastatic CRC (mCRC) who received first-line irinotecan-contained treatment. CCK-8, transwell, wound-healing assay, and tumor xenograft experiments were carried out to determine the impacts of EVs released from STCs on CRC progression in vitro and in vivo. Quantitative proteomic analysis was applied to identify protein cargo inside EVs secreted from STCs. Immunoprecipitation and mass spectrometer identification were utilized to explore the binding partners of SERPINE1. The interaction of SERPINE1 with p65 was verified by co-immunoprecipitation, and their co-localization was confirmed by immunofluorescence. RESULTS: Chemotherapeutic agents and irradiation could potently induce senescence in CRC cells in vitro and in human CRC tissues. The more significant elevation of p16 and p21 expression in patients after anti-cancer treatment displayed shorter disease-free survival (DFS) for LARC or progression-free survival (PFS) for mCRC. We observed that compared to non-STCs, STCs released an increased number of EVs enriched in SERPINE1, which further promoted the progression of recipient cancer cells. Targeting SERPINE1 with a specific inhibitor, tiplaxtinin, markedly attenuated the tumor-promoting effect of STCs-derived EVs. Additionally, the patients with greater increment of SERPINE1 expression after anti-cancer treatment had shorter DFS for LARC or PFS for mCRC. Mechanistically, SERPINE1 bound to p65, promoting its nuclear translocation and subsequently activating the NF-κB signaling pathway. CONCLUSIONS: We provide the in vivo evidence of the clinical prognostic implications of therapy-induced senescence. Our results revealed that STCs were responsible for CRC progression by producing large amounts of EVs enriched in SERPINE1. These findings further confirm the crucial role of therapy-induced senescence in tumor progression and offer a potential therapeutic strategy for CRC treatment.


Subject(s)
Colorectal Neoplasms , Extracellular Vesicles , Rectal Neoplasms , Humans , NF-kappa B/metabolism , Proteomics , Signal Transduction , Extracellular Vesicles/metabolism , Rectal Neoplasms/metabolism , Cellular Senescence , Colorectal Neoplasms/pathology , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/pharmacology
20.
Oncol Rep ; 51(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38639176

ABSTRACT

Following the publication of the above article, an interested reader drew to the authors' attention that, for the cell invasion assay experiments shown in Fig. 2D on p. 5, there appeared to be an overlapping section of data comparing between the Sao­2/Control and MG­63/siH19 panels, such that these data had been derived from the same original source where the panels were intended to portray the results from differently performed epxeriments. Upon examining their original data, the authors have realized that, in Fig. 2D, an inadvertent error was made in the copying and pasting of the two groups of pictures, resulting in the image belonging to the Saos­2 cell experiment being mistakenly pasted as the image for the MG­63 cell experiment. The authors carefully checked the original pictures and the experimental record, and found that the two groups of cells were close to the same morphology. The corrected version of Fig. 2, containing data from an alternatively performed experiment for Fig. 2D, is shown on the next page. Note that the error did not affect the overall conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this. They also apologize to the readership for any inconvenience caused. [Oncology Reports 46: 207, 2021; DOI: 10.3892/or.2021.8158].

SELECTION OF CITATIONS
SEARCH DETAIL
...