Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 547
Filter
1.
Nature ; 629(8010): 74-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38693415

ABSTRACT

Within the family of two-dimensional dielectrics, rhombohedral boron nitride (rBN) is considerably promising owing to having not only the superior properties of hexagonal boron nitride1-4-including low permittivity and dissipation, strong electrical insulation, good chemical stability, high thermal conductivity and atomic flatness without dangling bonds-but also useful optical nonlinearity and interfacial ferroelectricity originating from the broken in-plane and out-of-plane centrosymmetry5-23. However, the preparation of large-sized single-crystal rBN layers remains a challenge24-26, owing to the requisite unprecedented growth controls to coordinate the lattice orientation of each layer and the sliding vector of every interface. Here we report a facile methodology using bevel-edge epitaxy to prepare centimetre-sized single-crystal rBN layers with exact interlayer ABC stacking on a vicinal nickel surface. We realized successful accurate fabrication over a single-crystal nickel substrate with bunched step edges of the terrace facet (100) at the bevel facet (110), which simultaneously guided the consistent boron-nitrogen bond orientation in each BN layer and the rhombohedral stacking of BN layers via nucleation near each bevel facet. The pure rhombohedral phase of the as-grown BN layers was verified, and consequently showed robust, homogeneous and switchable ferroelectricity with a high Curie temperature. Our work provides an effective route for accurate stacking-controlled growth of single-crystal two-dimensional layers and presents a foundation for applicable multifunctional devices based on stacked two-dimensional materials.

2.
Infect Drug Resist ; 17: 1615-1623, 2024.
Article in English | MEDLINE | ID: mdl-38694890

ABSTRACT

Purpose: Infection prevention and control (IPC) has a significant impact on the prognosis after pediatric cardiac surgery. This study aimed to provide surveillance data on the incidence and density of various infections during the COVID-19 epidemic and explore the influence of multi-drug resistant organisms (MDRO) on in-hospital prognosis after congenital heart disease surgery. Methods: This single-center retrospective study included pediatric patients who underwent cardiac surgery between 2021 and 2022. The results of the postoperative bacterial and fungal cultures and antimicrobial stewardship were collected. The demographic characteristics (age and weight), operation-related parameters (RACHS-1 grade, duration of cardiopulmonary bypass, and aortic cross clamp), and surgical outcomes (extracorporeal membrane oxygenation, delayed sternal closure, mortality, duration of mechanical ventilation, length of intensive care unit stay and hospital stay, and hospitalization costs) of MDRO and non-MDRO patients were compared. Results: A total of 4776 patients were included. There were 101 infectious culture results after the operation, with a nosocomial infection rate of 2.1%. There were 40 MDRO specimens from 36 patients, 50 non-MDRO specimens from 30 patients, and 11 fungal specimens from 10 patients. The incidence of pneumonia was 1.5%, with a ventilator-associated pneumonia incidence density of 7.2/1000 patient-days. The incidence of sepsis was 0.4%, with a catheter-related bloodstream infection incidence density of 0.24/ 1000 patient-days. The incidence density of catheter-associated tract infection was 0.45/ 1000 patient-days. The incidence of surgical site infection was 0.06%. The culture proportion before commencing antibiotics was 93% and the antibiotic consumption intensity was 30.7 DDD/100 bed-days. The length of intensive care unit stay in MDRO infection patients increased compared with that in non-MDRO infection patients, 30 (18,52) vs 17 (7,62) days, p=0.05). Conclusion: The IPC performance of Fuwai Hospital achieved satisfactory results. MDRO infection can lead to prolonged intensive care unit stay.


Developed countries have advanced infection prevention and control systems and comprehensive postoperative infection monitoring data for congenital heart disease. While developing countries have initiated efforts in infection prevention and control, global attention remains substantial. This study aimed to provide comprehensive infection surveillance data and identify possible implementation for further improvement in the National Center for Cardiovascular Diseases in China (Fuwai Hospital). This was a retrospective single-center study. We included pediatric patients who underwent cardiac surgery at a pediatric surgical center between 2021 and 2022, with an age limit of 14 years. Exclusion criteria included patients undergoing medical therapy, interventional therapy, or surgical therapy in other centers in Fuwai Hospital. This study, for the first time, reports the incidence of comprehensive healthcare-associated infection surveillance and targeted surveillance (encompassing device-associated infection, surgical site infection, and multi-drug resistant organisms) after pediatric cardiac surgery at the National Center for Cardiovascular Diseases in China. In addition, we report the data on antimicrobial stewardship. We compared the surgical outcome and hospitalization costs between patients with multi-drug resistant organism infection and those without multi-drug resistant organism infection and found that multi-drug resistant organism infection can lead to prolonged intensive care unit length of stay. The Fuwai Hospital achieved satisfactory infection prevention and control results. However, because China is a large developing country exhibiting notable variations in medical conditions across its diverse regions, prospective, multicenter, observational studies should be carried out for future research based on existing evidence.

4.
J Phys Chem Lett ; 15(19): 5103-5111, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38708945

ABSTRACT

The vast compositional space available in high-entropy oxide semiconductors offers unique opportunities for electronic band structure engineering in an unprecedented large room. In this work, with wide band gap semiconductor lithium niobate (LiNbO3) as a model system, we show that the substitutional addition of high-entropy metal cation mixtures within the Nb sublattice can lead to the formation of a single-phase solid solution featuring a substantially narrowed band gap and intense broadband visible light absorption. The resulting high-entropy LiNbO3 [denoted as Li(HE)O3] crystallizes as well-faceted nanocubes; atomic-resolution imaging and elemental mapping via transmission electron microscopy unveil a distinct local chemical complexity and lattice distortion, characteristics of high-entropy stabilized solid solution phases. Because of the presence of high-entropy stabilized Co2+ dopants that serve as active catalytic sites, Li(HE)O3 nanocubes can accomplish the visible light-driven photocatalytic water splitting in an aqueous solution containing methanol as a sacrificial electron donor without the need of any additional co-catalysts.

5.
J Hazard Mater ; 474: 134703, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38805817

ABSTRACT

Graphitic carbon nitride has gained considerable attention as a visible-light photocatalyst. However, its photocatalytic efficiency is restricted by its limited capacity for absorbing visible light and swift recombination of charge carriers. To overcome this bottleneck, we fabricated an atomic Fe-dispersed ultrathin carbon nitride (Fe-UTCN) photocatalyst via one-step thermal polymerization. Fe-UTCN showed high efficiency in the photodegradation of acetaminophen (APAP), achieving > 90 % elimination within 60-min visible light irradiation. The anchoring of Fe atoms improved the photocatalytic activity of UTCN by narrowing the bandgap from 2.50 eV to 2.33 eV and suppressing radiative recombination. Calculations by density functional theory revealed that the Fe-N4 sites (adsorption energy of - 3.10 eV) were preferred over the UTCN sites (adsorption energy of - 0.18 eV) for the adsorption of oxygen and the subsequent formation of O2•-, the dominant reactive species in the degradation of APAP. Notably, the Fe-UTCN catalyst exhibited good stability after five successive runs and was applicable to complex water matrices. Therefore, Fe-UTCN, a noble-metal-free photocatalyst, is a promising candidate for visible light-driven water decontamination.

6.
Anal Chem ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820543

ABSTRACT

Ulcerative colitis is a persistent inflammatory bowel disease characterized by inflammation and ulceration in the colon and gastrointestinal tract. It was indicated that the generation of hypochlorous acid (HClO) through the enzymatic activity of myeloperoxidase is significantly linked to ulcerative colitis. In this study, by assembling two hairpins (Hpa and Hpb) onto a quadrivalent cruciform DNA nanostructure, a novel HClO-activatable fluorescent probe was developed based on DNA nanomaterials (denoted MHDNA), which is sensitive, economic, simple, and stable. In the presence of HClO, the Trigger (T) was liberated from the MHDNA probe through a hydrolysis reaction between HClO and phosphorothioate (PS), which is modified on the MHDNA probe and has proved to exhibit particular susceptibility to the HClO. The liberated T subsequently initiated the opening of Hpa and Hpb to facilitate the catalyzed hairpin assembly (CHA) reaction, resulting in the changes of fluorescence and releasing T for recycled signal amplification to achieve sensitive detection of HClO (with a limit of detection 9.83 nM). Additionally, the MHDNA-based spatial-confinement effect shortens the physical distance between Hpa and Hpb and yields a high local concentration of the two reactive hairpins, achieving more rapid reaction kinetics in comparison to conventional CHA methods. Inspirationally, the MHDNA probe was effectively utilized for imaging HClO in ulcerative colitis mice, yielding valuable diagnostic insights for ulcerative colitis.

7.
Parasitol Res ; 123(5): 226, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814484

ABSTRACT

In this study, 858 novel long non-coding RNAs (lncRNAs) were predicted as sensitive and resistant strains of Haemonchus contortus to ivermectin. These lncRNAs underwent bioinformatic analysis. In total, 205 lncRNAs significantly differed using log2 (difference multiplicity) > 1 or log2 (difference multiplicity) < - 1 and FDR < 0.05 as the threshold for significant difference analysis. We selected five lncRNAs based on significant differences in expression, cis-regulation, and their association with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. These expressions of lncRNAs, namely MSTRG.12610.1, MSTRG.8169.1, MSTRG.6355.1, MSTRG.980.1, and MSTRG.9045.1, were significantly downregulated. These findings were consistent with the results of transcriptomic sequencing. We further investigated the relative expression of target gene mRNAs and the regulation of mRNA and miRNA, starting with lncRNA cis-regulation of mRNA, and constructed a lncRNA-mRNA-miRNA network regulation. After a series of statistical analyses, we finally screened out UGT8, Unc-116, Fer-related kinase-1, GGPP synthase 1, and sart3, which may be involved in developing drug resistance under the regulation of their corresponding lncRNAs. The findings of this study provide a novel direction for future studies on drug resistance targets.


Subject(s)
Drug Resistance , Haemonchus , Ivermectin , RNA, Long Noncoding , Animals , Haemonchus/genetics , Haemonchus/drug effects , RNA, Long Noncoding/genetics , Ivermectin/pharmacology , Drug Resistance/genetics , Haemonchiasis/parasitology , Haemonchiasis/veterinary , Anthelmintics/pharmacology , MicroRNAs/genetics , Computational Biology , Gene Expression Profiling , Gene Expression Regulation/drug effects
8.
Rejuvenation Res ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814828

ABSTRACT

INTRODUCTION: To investigate the expression differences of peripheral blood mononuclear cells (PBMCs) in elderly rheumatoid arthritis (ERA) patients. METHOD: Differentially expressed genes (DEGs) of PBMCs between young patients with RA (RA_Y) and aged patients with RA (RA_A) were identified by RNA-seq using the DESeq2 package, followed by bioinformatics analysis. The overlapped targets of the current DEGs and proteomic differentially expressed proteins (another set of unpublished data) were identified and further validated. RESULTS: The bioinformatics analysis revealed significant transcriptomic heterogeneity between RA_A and RA_Y. A total of 348 up-regulated and 363 down-regulated DEGs were identified. Gene functional enrichment analysis indicated that the DEGs, which represented senescence phenotype for ERA patients, were enriched in pathways such as PI3K-Akt signaling, MAPK signaling, toll-like receptor family, neutrophil degranulation, and immune-related pathways. GSEA analysis further confirmed the activation of humoral immune response pathways in RA_A. qPCR validated the expression of five representative DEGs such as, SPTA1, SPTB, VNN1, TNXB and KRT1 in PBMCs of ERA patients. CONCLUSIONS: ERA patients have significantly senescence phenotype differences versus the young patients. The DEGs identified may facilitate exploration the biomarkers of senescence in RA.

9.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2247-2261, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812239

ABSTRACT

This study employed microcirculation visualization and metabolomics methods to explore the effect and possible mechanism of Dalbergia cochinchinensis in ameliorating coronary microvascular dysfunction(CMD) induced by microsphere embolization in rats. Sixty SPF-grade male SD rats were randomized into sham, model, and low-, medium-, and high-dose [1.5, 3.0, and 6.0 g·kg~(-1)·d~(-1), respectively] D. cochinchinensis water extract groups. The rats in sham and model groups were administrated with equal volume of normal saline by gavage once a day for 7 consecutive days. The rat model of CMD was prepared by injecting polyethylene microspheres into the left ventricle, while the sham group was injected with an equal amount of normal saline. A blood flow meter was used to measure blood flow, and a blood rheometer to measure blood viscosity and fibrinogen content. An automatic biochemical analyzer and reagent kits were used to measure the serum levels of myocardial enzymes, glucose, and nitric oxide(NO). Hematoxylin-eosin(HE) staining was used to observe the pathological changes of myocardial tissue. DiI C12/C18 perfusion was used to infuse coronary microvessels, and the structural and morphological changes were observed using a confocal laser scanning microscope. AngioTool was used to analyze the vascular area, density, radius, and mean E lacunarity in the microsphere embolization area, and vascular blood flow resistance was calculated based on Poiseuille's law. Non-targeted metabolomics based on high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed screen potential biomarkers and differential metabolites regulated by D. cochinchinensis and the involved metabolic pathways were enriched. The pharmacodynamic results showed that compared with the model group, D. cochinchinensis significantly increased mean blood flow, reduced plasma fibrinogen content, lowered the levels of myocardial enzymes such as creatine kinase(CK), creatine kinase-MB(CK-MB), and lactate dehydrogenase(LDH), alleviate myocardial injury, and protect damaged myocardium. In addition, D. cochinchinensis significantly increased serum NO content, promoted vascular smooth muscle relaxation, dilated blood vessels, lowered serum glucose(GLU) level, improved myocardial energy metabolism, and alleviated pathological changes in myocardial fibrosis and inflammatory cell infiltration. The results of coronary microcirculation perfusion showed that D. cochinchinensis improved the vascular morphology, increased the vascular area, density, and radius, reduced vascular mean E lacunarity and blood flow resistance, and alleviated vascular endothelial damage in CMD rats. The results of metabolomics identified 45 differential metabolites between sham and model groups, and D. cochinchinensis recovered the levels 25 differential metabolites, which were involved in 8 pathways including arachidonic acid metabolism, arginine biosynthesis, and sphingolipids metabolism. D. cochinchinensis can ameliorate coronary microcirculation dysfunction caused by microsphere embolization in rats, and it may alleviate the pathological changes of CMD rats by regulating inflammatory reaction, endothelial damage, and phospholipid metabolism.


Subject(s)
Dalbergia , Drugs, Chinese Herbal , Metabolomics , Microcirculation , Rats, Sprague-Dawley , Animals , Male , Rats , Microcirculation/drug effects , Dalbergia/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Myocardium/metabolism , Coronary Vessels/physiopathology , Humans
10.
Pulm Circ ; 14(2): e12387, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751611

ABSTRACT

Surgical indications for patients with pulmonary arterial hypertension (PAH) and congenital heart defects are controversial. The treat and repair strategy has demonstrated efficacy in adult populations, but there have been no studies on pediatric patients. This study included pediatric patients with PAH and simple congenital heart defects who underwent corrective repair between 2012 and 2021. According to the preoperative treatment strategies, the patients were divided into a regular strategy group (Group 1) and a treat-and-repair strategy group (Group 2). Postoperative recovery and follow-up results were compared between the two groups. A total of 33 patients were included in this study. Group 1 consisted of 19 patients, whereas Group 2 consisted of 14 patients. The pulmonary vascular resistance index in Group 2 was higher than that in Group 1 (10.9 ± 4.1 vs. 8.2 ± 1.6 WU, p = 0.031). There were no differences in postoperative recovery between the two groups (p > 0.05). During follow-up, five patients were lost (three in Group 1 and two in Group 2). The median follow-up period was 59 months. One patient died in Group 1, and two patients died in Group 2. There was no significant difference in the survival curve (p = 0.39). At the last follow-up, another seven patients had experienced a non-low-risk condition, with a total of three non-low-risk patients in Group 1 and seven in Group 2, including one patient in each group who had a history of ICU admission. According to the ROC curve, a preoperative PVRi <8.2 WU×m2 can predict postoperative persistent low-risk state, PVRi <5.2 WU×m2 can avoid postoperative death and/or ICU administration. In pediatric patients with PAH and simple congenital heart defects, the treat and repair strategies may provide surgery opportunities, PVRi should be <8 WU×m2, and <5.2 WU×m2 is the best choice.

11.
Chemosphere ; 355: 141871, 2024 May.
Article in English | MEDLINE | ID: mdl-38570052

ABSTRACT

Recycling solid waste for preparing sulfoaluminate cementitious materials (SACM) represents a promising approach for low-carbon development. There are drastic physical-chemical reactions during SACM calcination. However, there is a lack of research on the flue gas pollutants emissions from this process. Condensable particulate matter (CPM) has been found to constitute the majority of the primary PM emitted from various fuel combustion. In this study, the emission characteristics of CPM during the calcination of SACM were determined using tests in both a real-operated kiln and laboratory experiments. The mass concentration of CPM reached 96.6 mg/Nm3 and occupied 87% of total PM emission from the SACM kiln. Additionally, the mass proportion of SO42- in the CPM reached 93.8%, thus indicating that large quantities of sulfuric acid mist or SO3 were emitted. CaSO4 was one key component for the formation of main mineral ye'elimite (3CaO·3Al2O3·CaSO4), and its decomposition probably led to the high SO42- emission. Furthermore, the use of CaSO4 as a calcium source led to SO42- emission factor much higher than conventional calcium sources. Higher calcination temperature and more residence time also increased SO42- emission. The most abundant heavy metal in kiln flue gas and CPM was Zn. However, the total condensation ratio of heavy metals detected was only 40.5%. CPM particles with diameters below 2.5 µm and 4-20 µm were both clearly observed, and components such as Na2SO4 and NaCl were conformed. This work contributes to the understanding of CPM emissions and the establishment of pollutant reduction strategies for waste collaborative disposal in cement industry.


Subject(s)
Air Pollutants , Environmental Pollutants , Metals, Heavy , Particulate Matter/analysis , Air Pollutants/analysis , Solid Waste , Calcium
12.
Ying Yong Sheng Tai Xue Bao ; 35(3): 749-758, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646763

ABSTRACT

With the economic development, a large number of engineering accumulation bodies with Lou soil as the main soil type were produced in Guanzhong area, Northwest China. We examined the characteristics of runoff and sediment yield of Lou soil accumulation bodies with earth (gravel content 0%) and earth-rock (gravel content 30%) under different rainfall intensities (1.0, 1.5, 2.0, 2.5 mm·min-1) and different slope lengths (3, 5, 6.5, 12 m) by the simulating rainfall method. The results showed that runoff rate was relatively stable when rainfall intensity was 1.0-1.5 mm·min-1, while runoff rate fluctuated obviously when rainfall intensity was 2.0-2.5 mm·min-1. The average runoff rate varied significantly across different rainfall intensities on the same slopes, and the difference of average runoff rate of the two slopes was significantly increased with rainfall intensity. Under the same rainfall intensity, the difference in runoff rate between the slope lengths of the earth-rock slope was more obvious than that of the earth slope. When the slope length was 3-6.5 m, flow velocity increased rapidly at first and then increased slowly or tended to be stable. When the slope length was 12 m, flow velocity increased significantly. In general, with the increases of rainfall intensity, inhibition effect of gravel on the average flow velocity was enhanced. When rainfall intensity was 2.5 mm·min-1, the maximum reduction in the average flow velocity of earth-rock slope was 61.5% lower than that of earth slope. When rainfall intensity was less than 2.0 mm·min-1, sediment yield rate showed a trend of gradual decline or stable change, while that under the other rainfall intensities showed a trend of rapid decline and then fluctuated sharply. The greater the rainfall intensity, the more obvious the fluctuation. There was a significant positive correlation between the average sediment yield rate and runoff parameters, with the runoff rate showing the best fitting effect. Among the factors, slope length had the highest contribution to runoff velocity and rainfall erosion, which was 51.8% and 35.5%, respectively. This study can provide scientific basis for soil and water erosion control of engineering accumulation in Lou soil areas.


Subject(s)
Geologic Sediments , Rain , Soil , Water Movements , China , Soil/chemistry , Ecosystem , Environmental Monitoring/methods , Gravitation , Engineering
13.
Appl Opt ; 63(9): 2180-2186, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38568570

ABSTRACT

In this paper, a methane detection sensor based on direct absorption spectroscopy and the self-heating effect of lasers is proposed, which abandons the traditional method of relying on a thermoelectric cooler (TEC) to ensure stable gas concentration detection. The sensor can achieve stable concentration measurement in the temperature range of -10∘ to 40°C without the need for a TEC, which greatly simplifies the structure of the sensor and reduces the cost. The results of gas concentration calibration experiments show that the sensor has a good linear correlation (R 2=0.9993). Long-term continuous detection experiments show that the sensor maintains a relative detection error between -2.667% and 4.3% over the full test temperature range. In addition, signal-to-noise ratio analysis experiments further determine that the minimum detection limit of the sensor for methane gas is 27.33p p m⋅m (1σ). Given its advantages of simple structure, low cost, high accuracy, and stability, this methane detection sensor is well suited for natural gas leakage monitoring in home environments and can also be widely used in industrial safety detection and environmental monitoring applications. This technology provides a cost-effective solution for domestic and industrial methane detection.

14.
Opt Express ; 32(6): 9625-9633, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571192

ABSTRACT

We demonstrate a compact watt-level all polarization-maintaining (PM) femtosecond fiber laser source at 1100 nm. The fiber laser source is seeded by an all PM fiber mode-locked laser employing a nonlinear amplifying loop mirror. The seed laser can generate stable pulses at a fundamental repetition rate of 40.71 MHz with a signal-to-noise rate of >100 dB and an integrated relative intensity noise of only ∼0.061%. After two-stage external amplification and pulse compression, an output power of ∼1.47 W (corresponding to a pulse energy of ∼36.1 nJ) and a pulse duration of ∼251 fs are obtained. The 1100 nm femtosecond fiber laser is then employed as the excitation light source for multicolor multi-photon fluorescence microscopy of Chinese hamster ovary (CHO) cells stably expressing red fluorescent proteins.

15.
J Phys Chem Lett ; 15(17): 4633-4639, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38647166

ABSTRACT

Ligand engineering is crucial for tuning the structural and optoelectronic properties of perovskite nanocrystals (NCs), which also improves their stability. In contrast to the typically used long-chain alkylamine ligands, we successfully introduced an aromatic 1-(p-tolyl)ethylamine (PTEA) ligand to synthesize the CsPbX3 (X = Br or I) NCs. The CsPbI3 and CsPbBr3 NCs demonstrated long carrier lifetimes of ∼877 and 49 ns, respectively, as well as high photoluminescence quantum yields (PLQYs) of ∼99% and 95%, respectively. Furthermore, such NCs realized excellent long-term stability in an ambient atmosphere without obvious degradation over one month. All of these properties were better than the properties of NCs coated with the conventional alkylamine ligands. The high performance of these NCs was discussed with the effective surface passivation by PTEA. Our finding suggests a facile and effective ligand (PTEA) for modulating perovskites, achieving enhancement of both the carrier lifetime and the PLQY.

16.
ACS Nano ; 18(17): 11449-11461, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38644575

ABSTRACT

Bimetallic alloy nanoparticles have garnered substantial attention for diverse catalytic applications owing to their abundant active sites and tunable electronic structures, whereas the synthesis of ultrafine alloy nanoparticles with atomic-level homogeneity for bulk-state immiscible couples remains a formidable challenge. Herein, we present the synthesis of RuxCo1-x solid-solution alloy nanoparticles (ca. 2 nm) across the entire composition range, for highly efficient, durable, and selective CO2 hydrogenation to CH4 under mild conditions. Notably, Ru0.88Co0.12/TiO2 and Ru0.74Co0.26/TiO2 catalysts, with 12 and 26 atom % of Ru being substituted by Co, exhibit enhanced catalytic activity compared with the monometallic Ru/TiO2 counterparts both in dark and under light irradiation. The comprehensive experimental investigations and density functional theory calculations unveil that the electronic state of Ru is subtly modulated owing to the intimate interaction between Ru and Co in the alloy nanoparticles, and this effect results in the decline in the CO2 conversion energy barrier, thus ultimately culminating in an elevated catalytic performance relative to monometallic Ru and Co catalysts. In the photopromoted thermocatalytic process, the photoinduced charge carriers and localized photothermal effect play a pivotal role in facilitating the chemical reaction process, which accounts for the further boosted CO2 methanation performance.

17.
Front Public Health ; 12: 1309561, 2024.
Article in English | MEDLINE | ID: mdl-38566800

ABSTRACT

Objective: To understand the health status of older adults living alone in China and analyze the influencing factors, so as to provide reference for improving the health status of older adults living alone. Methods: Based on CGSS data from China General Social Survey (2017), the influencing factors of health status of older adults living alone were analyzed by unconditional Logistic regression, and the R software was used to develop a nomogram for predicting the risk of self-assessed unhealthy adverse outcomes. Results: Gender, annual income, mandarin listening level and participation in medical insurance were the influencing factors of self-rated health of older adults living alone. Age and annual income are the influencing factors of physiological health. Annual income and Internet use were influential factors for mental health. C-Statistic of nomogram prediction model was 0.645. The calibration curve showed that goodness of fit test (χ2 = 58.09, p < 0.001), and the overall prediction ability of the model was good. Conclusion: The health status of older adults living alone in the home-based older adults care is worrying, and it is affected by various factors. We should pay more attention to older adults living alone, improve the ability of listening and distinguishing mandarin and the use of health information platforms for older adults living alone, and further implement medical insurance policies and health services. Announcing the solution to promote healthy home-based care for older adults living alone.


Subject(s)
Home Environment , Nomograms , Risk Factors , Health Status , Income
18.
Inflamm Res ; 73(6): 1033-1046, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38630134

ABSTRACT

OBJECTIVE: Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication. Phospholipase D2 (PLD2) is crucial in mediating inflammatory reactions and is associated with the prognosis of patients with sepsis. Whether PLD2 is involved in the pathophysiology of SICM remains unknown. This study aimed to investigate the effect of PLD2 knockout on SICM and to explore potential mechanisms. METHODS: The SICM model was established using cecal ligation and puncture in wild-type and PLD2-knockout mice and lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Transfection with PLD2-shRNA lentivirus and a PLD2 overexpression plasmid were used to interfere with PLD2 expression in H9C2 cells. Cardiac pathological alterations, cardiac function, markers of myocardial injury, and inflammatory factors were used to evaluate the SICM model. The expression of pyroptosis-related proteins (NLRP3, cleaved caspase 1, and GSDMD-N) was assessed using western blotting, immunofluorescence, and immunohistochemistry. RESULTS: SICM mice had myocardial tissue damage, increased inflammatory response, and impaired heart function, accompanied by elevated PLD2 expression. PLD2 deletion improved cardiac histological changes, mitigated cTNI production, and enhanced the survival of the SICM mice. Compared with controls, PLD2-knockdown H9C2 exhibits a decrease in inflammatory markers and lactate dehydrogenase production, and scanning electron microscopy results suggest that pyroptosis may be involved. The overexpression of PLD2 increased the expression of NLRP3 in cardiomyocytes. In addition, PLD2 deletion decreased the expression of pyroptosis-related proteins in SICM mice and LPS-induced H9C2 cells. CONCLUSION: PLD2 deletion is involved in SICM pathogenesis and is associated with the inhibition of the myocardial inflammatory response and pyroptosis through the NLRP3/caspase 1/GSDMD pathway.


Subject(s)
Cardiomyopathies , Caspase 1 , Mice, Knockout , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Phospholipase D , Pyroptosis , Sepsis , Animals , Male , Mice , Rats , Cardiomyopathies/etiology , Cardiomyopathies/genetics , Caspase 1/metabolism , Caspase 1/genetics , Cell Line , Gasdermins , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Phospholipase D/genetics , Phospholipase D/metabolism , Sepsis/complications , Sepsis/genetics , Signal Transduction
19.
Animals (Basel) ; 14(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612250

ABSTRACT

BACKGROUND: Feline pulmonary Langerhans cells histiocytosis (PLCH) is a rare disorder that results in progressive respiratory failure secondary to pulmonary parenchymal infiltration with Langerhans cells (LCs). A diagnosis of PLCH is proposed based on the clinical features and pathological findings and confirmed based on the infiltrating histiocytic cells. There are few documented cases of feline PLCH, and this case report of PLCH in an African Lion could present new information and aspects of this feline histiocytic disease. CASE PRESENTATION: An African lion at Hohhot Zoo showing severe hyporexia and dyspnea with subsequent mental depression and emaciation died of exhaustion after a 35-day course of illness. Empirical treatment did not have a significant effect. An autopsy revealed that the lungs were enlarged and hardened due to infiltrative lesions, with many yellowish-white foci in all the lobes and sections. Furthermore, the kidneys were atrophied and had scattered grayish-white lesions on the surface. At the same time, congestion was widely distributed in various locations, including the liver, subcutaneous loose connective tissues, serosal surface and other tissues and organs. Histologically, proliferative histiocytic cells (PHCs) were scattered in the alveolar cavities, bronchioles and submucosa of bronchioles, with evident cellular and nuclear pleomorphism, and thus the alveolar septa were obliterated. The histopathological changes in other organs included chronic sclerosing glomerulonephritis, proliferated Kupffer cells in the liver, adrenal edema and interstitial connective tissue hyperplasia, as well as atrophy of the small intestines and spleen. Furthermore, immunohistochemical analysis results were strongly positive for CD1a, vimentin, S100 and E-cadherin in the membrane or cytoplasm of PHCs, supporting an LC phenotype. CONCLUSIONS: Here, we present a rare pulmonary Langerhans cell histiocytosis case in an African lion.

20.
Water Res ; 255: 121533, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38569359

ABSTRACT

Low-pressure mercury lamps emitting at 254 nm (UV254) are used widely for disinfection. However, subsequent exposure to visible light results in photoreactivation of treated bacteria. This study employed a krypton chloride excimer lamp emitting at 222 nm (UV222) to inactivate E. coli. UV222 and UV254 treatment had similar E. coli-inactivation kinetics. Upon subsequent irradiation with visible light, E. coli inactivated by UV254 was reactivated from 2.71-log to 4.75-log, whereas E. coli inactivated by UV222 showed negligible photoreactivation. UV222 treatment irreversibly broke DNA strands in the bacterium, whereas UV254 treatment primarily formed nucleobase dimers. Additionally, UV222 treatment caused cell membrane damage, resulting in wizened, pitted cells and permeability changes. The damage to the cell membrane was mainly due to the photolysis of proteins and lipids by UV222. Furthermore, the photolysis of proteins by UV222 destroyed enzymes, which blocked photoreactivation and dark repair. The multiple damages can be further evidenced by 4.0-61.1 times higher quantum yield in the photolysis of nucleobases and amino acids for UV222 than UV254. This study demonstrates that UV222 treatment damages multiple sites in bacteria, leading to their inactivation. Employing UV222 treatment as an alternative to UV254 could be viable for inhibiting microorganism photoreactivation in water and wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...