Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Sci Total Environ ; 946: 174440, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960182

ABSTRACT

Despite the increasing use of motor vehicles, the impact of airborne pollutants and their health risks inside public transportation, such as commuter buses, is not well understood. This study assessed air quality inside an urban commuter bus by continuously monitoring PM10, PM2.5, and CO concentrations during both driving and parking periods. Our findings revealed that the ventilation system of the bus significantly reduced the infiltration of outdoor particulate matter and water vapor. However, CO concentrations were considerably higher inside the bus than outside, primarily due to vehicular self-emission. The ineffection of the ventilation system to remove CO potentially increases long-term exposure risks for passengers. The study identified ozone as a key oxidant in the cabin. Besides vehicle emissions, C3-C10 saturated aldehydes and carbonyl compounds were detected, including acetone, propanal, and hexanal. The presence of 6-MHO, an oxidation product of squalene, suggests that passengers contribute to VOCs load through direct emissions or skin surface reactions. Additionally, human respiration was found to significantly contribute to isoprene levels, estimated at 81.7 %. This research underscores the need for further investigation into the cumulative effects of stable compounds in cabin air and provides insights for developing healthier public transportation systems.

2.
Inorg Chem ; 63(25): 11768-11778, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38864539

ABSTRACT

The exploration of low-cost, efficient, environmentally safe, and selective catalysts for the activation of carbon-halogen bonds has become an important and challenging topic in modern chemistry. With the help of density functional theory (DFT), it is found that phenyl bromide (PhBr) can be efficiently chemisorbed by the Al12M (M = Be, Al, C, and P) superatoms via forming highly polarized Al-Br covalent bonds, where the C-Br bonds of PhBr can be effectively activated through the electron transfer from Al12M. The different electronic structures of these four Al12M superatoms pose a substantial effect on their performances on the activation of PhBr and the catalytic mechanisms of the Suzuki-Miyaura (SM) reaction. Among them, the alkali-metal-like superatom Al12P exhibits the best performance for the activation of PhBr. In particular, Al13 and Al12P with open-shell electronic structures exhibit catalytic performances comparable to those of previously reported catalysts for this coupling reaction. Hence, it is highly expected that Al13 and Al12P could be used as novel superatom catalysts for C-C coupling reactions and, therefore, open up new possibilities to use nonprecious superatoms in catalyzing the activation and transformation of carbon-halogen bonds.

3.
Evol Appl ; 17(6): e13710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38817396

ABSTRACT

Selective breeding for production traits has yielded relatively rapid successes with high-fecundity aquaculture species. Discovering the genetic changes associated with selection is an important goal for understanding adaptation and can also facilitate better predictions about the likely fitness of selected strains if they escape aquaculture farms. Here, we hypothesize domestication as a genetic change induced by inadvertent selection in culture. Our premise is that standardized culture protocols generate parallel domestication effects across independent strains. Using eastern oyster as a model and a newly developed 600K SNP array, this study tested for parallel domestication effects in multiple independent selection lines compared with their progenitor wild populations. A single contrast was made between pooled selected strains (1-17 generations in culture) and all wild progenitor samples combined. Population structure analysis indicated rank order levels of differentiation as [wild - wild] < [wild - cultured] < [cultured - cultured]. A genome scan for parallel adaptation to the captive environment applied two methodologically distinct outlier tests to the wild versus selected strain contrast and identified a total of 1174 candidate SNPs. Contrasting wild versus selected strains revealed the early evolutionary consequences of domestication in terms of genomic differentiation, standing genetic diversity, effective population size, relatedness, runs of homozygosity profiles, and genome-wide linkage disequilibrium patterns. Random Forest was used to identify 37 outlier SNPs that had the greatest discriminatory power between bulked wild and selected oysters. The outlier SNPs were in genes enriched for cytoskeletal functions, hinting at possible traits under inadvertent selection during larval culture or pediveliger setting at high density. This study documents rapid genomic changes stemming from hatchery-based cultivation of eastern oysters, identifies candidate loci responding to domestication in parallel among independent aquaculture strains, and provides potentially useful genomic resources for monitoring interbreeding between farm and wild oysters.

4.
Nat Prod Res ; : 1-8, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572741

ABSTRACT

The phytochemical study of the fruits of Melia azedarach (Meliaceae) led to the isolation and characterisation of two novel natural limonoids1-deoxy- 3, 20-dicinnamoyl-11-methoxy-meliacarpinin (1) and 12ß- O- methyl nimbolinin A (2), along with twelve known limonoids. Its structure was identified by 1D- and 2D-NMR, HR-ESI-MS and comparison with published data. The anti-inflammatory effect of the compounds was measured in vitro in RAW 264.7 cells by evaluating the production of NO stimulated by LPS. Compounds 1, 8 and 14 indicated significant anti-inflammatory effect with inhibition rate of 11.76, 8.45 and 6.59 µM, respectively. Limonoid 1 significantly inhibited the production of NO, TNF-α and IL-1ß in RAW 264.7 cells. Therefore, limonoid derivative may be a promising source of bioactive metabolite for inflammatory diseases.

5.
Pest Manag Sci ; 80(7): 3116-3125, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38334193

ABSTRACT

BACKGROUND: Temperature is a primary factor that determines the eco-geographical distribution and population development of invasive insects. Temperature stress leads to various negative effects, including excess reactive oxygen species (ROS), and catalase (CAT) is a key enzyme against ROS in the antioxidant pathway. The whitefly Bemisia tabaci MED is a typical invasive pest that causes damage worldwide. Our previous studies have shown that CAT promotes whitefly adaptation to high temperature by eliminating ROS. However, the mechanism underlying the low-temperature adaptation of whiteflies is still unknown. RESULTS: In this study, we investigated the role of CAT in the low-temperature tolerance of B. tabaci MED by analyzing its survival rate, reproduction, and ROS levels at 25 °C (as a control, suitable temperature), 20 °C (moderately decreased temperature), and 4 °C (severely decreased temperature). Silencing of BtCAT1, BtCAT2, or BtCAT3 reduced the viability of whiteflies under a short-term severely decreased temperature (4 °C), which manifested as decreases in survival and fecundity accompanied by significant increases in ROS levels. Moreover, even at a moderately decreased temperature (20 °C), silencing of BtCAT1 led to high ROS levels and low survival rates in adults. CONCLUSION: Silencing of BtCATs significantly increased the sensitivity of B. tabaci MED to low temperatures. BtCAT1 is likely more essential than other BtCATs for low-temperature tolerance in whiteflies. © 2024 Society of Chemical Industry.


Subject(s)
Catalase , Cold Temperature , Hemiptera , Reactive Oxygen Species , Animals , Hemiptera/genetics , Hemiptera/physiology , Catalase/metabolism , Catalase/genetics , Reactive Oxygen Species/metabolism , Gene Silencing , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Male
6.
Sensors (Basel) ; 23(19)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37837090

ABSTRACT

Due to the increased employment of robots in modern society, path planning methods based on human-robot collaborative mobile robots have been the subject of research in both academia and industry. The dynamic window approach used in the research of the robot local path planning problem involves a mixture of fixed weight coefficients, which makes it hard to deal with the changing dynamic environment and the issue of the sub-optimal global planning paths that arise after local obstacle avoidance. By dynamically modifying the combination of weight coefficients, we propose, in this research, the use of fuzzy control logic to optimize the evaluation function's sub-functions and enhance the algorithm's performance through the safe and dynamic avoidance of obstacles. The global path is introduced to enhance the dynamic window technique's ability to plan globally, and important points on the global path are selected as key sub-target sites for the local motion planning phase of the dynamic window technique. The motion position changes after local obstacle avoidance to keep the mobile robot on the intended global path. According to the simulation results, the enhanced dynamic window algorithm cuts planning time and path length by 16% and 5%, respectively, while maintaining good obstacle avoidance and considering a better global path in the face of various dynamic environments. It is difficult to achieve a local optimum using this algorithm.

7.
J Mol Graph Model ; 125: 108617, 2023 12.
Article in English | MEDLINE | ID: mdl-37696119

ABSTRACT

Developing novel nanoscale carriers for drug delivery is of great significance for improving treatment efficiency and reducing side effects of antitumor drugs. In view of the good biocompatibility and special affinity of porphyrin (PP) molecule to cancer cells, it was used to construct a series of metal-doped M@PP (M = Ca âˆ¼ Zn) materials for the delivery of anticancer drug 5-fluorouracil (5-Fu) in this work. Our results reveal that 5-Fu is tightly adsorbed on M@PP (M = Ca âˆ¼ V, Mn âˆ¼ Co, and Zn) by chemisorption, but is physically adsorbed by M@PP (M = Cr, Ni, and Cu). The calculated electronic properties show that all these 5-Fu@[M@PP] (M = Ca âˆ¼ Zn) complexes have both high stability and solubility. Among these 5-Fu@[M@PP] complexes, the chemical bond formed between 5-Fu and Ti@PP has the strongest covalent characteristic, resulting in the largest adsorption energy of -19.93 kcal/mol for 5-Fu@[Ti@PP]. In particular, 5-Fu@[Ti@PP] has the proper recovery time under the near-infrared light at body temperature, which further suggests that Ti@PP is the best drug carrier for 5-Fu. This study not only reveals the interaction strength and nature between 5-Fu and M@PP, but also confirmed the intriguing potential of Ti@PP as nano-carrier for drug delivery. However, further experimental research should be conducted to verify the conclusion obtained in this work.


Subject(s)
Antineoplastic Agents , Metalloporphyrins , Drug Carriers , Fluorouracil/pharmacology , Drug Delivery Systems
8.
Appl Opt ; 62(21): 5815-5821, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37707201

ABSTRACT

In order to solve the problem of phase compensation errors in the traditional 2π phase compensation method caused by a rough surface and complex structure of objects in dual-wavelength digital holographic microscopy, a phase compensation algorithm based on image segmentation was proposed. First, the phase less than zero in the phase obtained by an equivalent wavelength is compensated for by adding 2π initially. Then the phase after the initial compensation is binarized, and the small connected areas in the binarized graph are removed, so as to obtain a new binarized graph. Finally, according to the two binarized graphs, the phase of the object after the initial 2π phase compensation is recompensated for in different regions, so as to obtain the continuous phase distribution of the object. Based on the dual-wavelength digital holographic microscopy experimental system with an adjustable equivalent wavelength, the proposed algorithm is used to perform three-dimensional imaging of the channel of the microfluidic chip. The experimental results show that the proposed method can effectively obtain the continuous real phase of the object when the structure of the object is known, so as to obtain a more accurate and reliable three-dimensional topography of the object. The above results provide a new idea for the high-quality three-dimensional imaging of the microfluidic system.

9.
Anal Methods ; 15(29): 3592-3600, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37466448

ABSTRACT

Multifunctional thin films in energy-related devices often must be electrically insulating where a single nanoscale defect can result in complete device-scale failure. Locating and characterizing such defects presents a fundamental problem where high-resolution imaging methods are needed to find defects, but imaging with high spatial resolution limits the field of view and thus the measurement throughput. Here, we present a novel high-throughput method for detecting sub-micron defects in insulating thin films by leveraging the electrochemiluminescence (ECL) of luminol. Through a systematic study of reagent concentrations, buffers, voltage, and excitation time, we identify optimized conditions under which it is possible to detect sub-micron defects at high-throughput. Extrapolating from the signal to background observed for detecting 440 nm wide lines and 620 nm diameter circles, we estimate the minimum detectable features to be lines as narrow as 2.5 nm in width and pinholes as small as 70 nm in radius. We further explore this method by using it to characterize a nominally insulating poly(phenylene oxide) film and find conductive defects that are cross-correlated with high-resolution atomic force microscopy to provide feedback to synthesis. Given this assay's inherent parallelizability and scalability, it is expected to have a major impact on the automated discovery of multifunctional films.

10.
J Environ Sci (China) ; 132: 98-108, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37336613

ABSTRACT

Smog chambers are the effective tools for studying formation mechanisms of air pollution. Simulations by traditional smog chambers differ to a large extent from real atmospheric conditions, including light, temperature and atmospheric composition. However, the existing parameters for mechanism interpretation are derived from the traditional smog chambers. To address the gap between the traditional laboratory simulations and the photochemistry in the real atmosphere, a vehicle-mounted indoor-outdoor dual-smog chamber (JNU-VMDSC) was developed, which can be quickly transferred to the desired sites to simulate quasi-realistic atmosphere simultaneously in both chambers using "local air". Multiple key parameters of the smog chamber were characterized in the study, demonstrating that JNU-VMDSC meets the requirements of general atmospheric chemistry simulation studies. Additionally, the preliminary results for the photochemical simulations of quasi-realistic atmospheres in Pearl River Delta region and Nanling Mountains are consistent with literature reports on the photochemistry in this region. JNU-VMDSC provides a convenient and reliable experimental device and means to study the mechanism of atmospheric photochemical reactions to obtain near-real results, and will make a great contribution to the control of composite air pollution.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Smog/analysis , Ozone/chemistry , Photochemical Processes , Atmosphere/chemistry
11.
Molecules ; 28(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298906

ABSTRACT

Deep generative models applied to the generation of novel compounds in small-molecule drug design have attracted a lot of attention in recent years. To design compounds that interact with specific target proteins, we propose a Generative Pre-Trained Transformer (GPT)-inspired model for de novo target-specific molecular design. By implementing different keys and values for the multi-head attention conditional on a specified target, the proposed method can generate drug-like compounds both with and without a specific target. The results show that our approach (cMolGPT) is capable of generating SMILES strings that correspond to both drug-like and active compounds. Moreover, the compounds generated from the conditional model closely match the chemical space of real target-specific molecules and cover a significant portion of novel compounds. Thus, the proposed Conditional Generative Pre-Trained Transformer (cMolGPT) is a valuable tool for de novo molecule design and has the potential to accelerate the molecular optimization cycle time.


Subject(s)
Animal Diseases , Drug Design , Animals
12.
Chemphyschem ; 24(8): e202200776, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36593177

ABSTRACT

The unique characteristic of superatoms to show chemical properties like those of individual atoms opens a new avenue towards replacing noble metals as catalysts. Given the similar electronic structures of the ZrO superatom and the Pd atom, the CO oxidation mechanisms catalysed by (ZrO)n (n=1-4) clusters were investigated in detail to evaluate their catalytic performance. Our results reveal that a single ZrO superatom exhibits superior catalytic ability in CO oxidation than both larger (ZrO)n (n=2-4) clusters and a Pd atom, indicating the promising potential of ZrO as a "single-superatom catalyst". Moreover, the mechanism of CO oxidation catalysed by ZrO+/- suggests that depositing a ZrO superatom onto the electron-rich substrates is a better choice for practical catalysis application. Accordingly, a graphene nanosheet (coronene) was chosen as a representative substrate for ZrO and Pd to assess their catalytic performances in CO oxidation. Acting as an "electron sponge", this carbon substrate can both donate and accept charges in different reaction steps, enabling the supported ZrO to achieve enhanced catalytic performance in this process with a low energy barrier of 19.63 kcal/mol. This paper presents a new realization on the catalytic performance of Pd-like superatom in CO oxidation, which could increase the interests in exploring noble metal-like superatoms as efficient catalysts for various reactions.

13.
Insect Sci ; 30(5): 1293-1308, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36478361

ABSTRACT

Thermal stress usually leads to excessive production of reactive oxygen species (ROS) in all aerobic organisms. Catalases (CAT) are the key antioxidant enzymes, which act as the first line of defense against ROS in the antioxidant pathway. The highly invasive and widely distributed whitefly Bemisia tabaci MED damages plants by feeding as well as by transmitting many plant viruses. Previous studies have shown that strong adaptability to high temperature helps explain the spread of MED around the world. However, the mechanism underlying high temperature adaptation of this pest is not well understood. In this study, 6 CAT genes were identified from the MED genome and transcriptome dataset, among which BtCAT1, BtCAT2, and BtCAT3 were found to be highly expressed in adults. The expression of BtCAT1, BtCAT2, or BtCAT3 increased with induction temperature and induction time. The MED was exposed with mean high temperature (30 °C or 35 °C) and a short-term extremely high temperature (39 °C or 41 °C) after the silencing of BtCAT1, BtCAT2, or BtCAT3 to significantly increased ROS levels by at least 0.5 times and significantly decreased survival rate and fecundity of MED adults. The ROS level in the treated specimens gradually returned to a normal level after 24 h at 25 °C, but the survival rate still declined significantly. Taken together, our results demonstrate that CAT could help B. tabaci adapt to long-term mean high temperatures and short-term extremely high temperatures by eliminating excessive ROS.

14.
Nanoscale ; 14(48): 18231-18240, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36468662

ABSTRACT

The discovery of tungsten carbide (WC) as an analog of the noble metal Pt atom is of great significance toward designing novel highly-active catalysts from the viewpoint of the superatom concept. The potential of such a superatom to serve as building blocks of replacement catalysts for Pt has been evaluated in this work. The electronic properties, adsorption behaviors, and catalytic mechanisms towards the CO oxidation of (WC)n and Ptn (n = 1, 2, 4, and 6) were compared. Counterintuitively, these studied (WC)n clusters exhibit quite different electronic properties and adsorption behaviours from the corresponding Ptn species. For instance, (WC)n preferentially adsorbs O2, whereas Ptn tends to first combine with CO. Even so, it is interesting to find that the catalytic performances of (WC)n are always superior to the corresponding Ptn, and especially, the largest (WC)6 cluster exhibits the best catalytic ability towards CO oxidation. Therefore, assembling superatomic WC clusters into larger polymeric clusters can be regarded as a novel strategy to develop efficient superatom-assembled catalysts for CO oxidation. It is highly expected to see the realization of non-noble metal catalysts for various reactions in the near future experiments by using superatoms as building blocks.

15.
Twin Res Hum Genet ; 25(1): 1-9, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35466909

ABSTRACT

Erikson asked what makes some people care for the future of the species and others not, calling this 'generativity vs. stagnation'. In three studies, we addressed structure of this trait and its heritability. Study 1 (N = 1570), using structural models of the Loyola Generativity Scale , revealed three correlated factors consisting of (1) Establishing and aiding the next generation; (2) Maintaining the world; and (3) Symbolic immortality through a positive legacy. Study 2 (N = 311) successfully replicated this structure in an independent UK sample. Study 3 tested genetic and environmental influences on generativity. All three factors showed significant and substantial heritable influence. A general factor was required, which was also heritable. In resolving previous uncertainty over the transmission of generativity across generations, shared environmental transmission models fit poorly. Substantial unique environmental effects suggest strong cultural impacts on concern for the species. Generativity researchers may usefully adopt this three-factor scoring system, allowing research on the predictive power of each component of generativity as well as molecular genetic or biological studies.

16.
Sci Total Environ ; 824: 153782, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35183643

ABSTRACT

Glyoxal (Gly) and methylglyoxal (Mgly) are the intermediate products of several volatile organic compounds (VOCs) as well as the precursors of brown carbon and may play key roles in photochemical pollution and regional climate change in the Tibetan Plateau (TP). However, their sources and atmospheric behaviors in the TP remain unclear. During the second Tibetan Plateau Scientific Expedition and Research in the summer of 2020, the concentrations of Gly (0.40 ± 0.30 ppbv) and Mgly (0.57 ± 0.16 ppbv) observed in Lhasa, the most densely populated city in the TP, had increased by 20 and 15 times, respectively, compared to those measured a decade previously. Owing to the strong solar radiation, secondary formations are the dominant sources of both Gly (71%) and Mgly (62%) in Lhasa. In addition, primary anthropogenic sources also play important roles by emitting Gly and Mgly directly and providing abundant precursors (e.g., aromatics). During ozone pollution episodes, local anthropogenic sources (industries, vehicles, solvent usage, and combustion activities) contributed up to 41% and 45% in Gly and Mgly levels, respectively. During non-episode periods, anthropogenic emissions originating from the south of Himalayas also have non-negligible contributions. Our results suggest that in the previous decade, anthropogenic emissions have elevated the levels of Gly and Mgly in the TP dramatically. This study has important implications for understanding the impact of human activities on air quality and climate change in this ecologically fragile area.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring/methods , Glyoxal/analysis , Humans , Pyruvaldehyde/analysis , Tibet , Volatile Organic Compounds/analysis
17.
Ecotoxicol Environ Saf ; 230: 113126, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34974359

ABSTRACT

Toluene is a typical anthropogenic pollutant that has profound impacts on air quality, climate change, and human health, but its sources and sinks over forests surrounding megacities remain unclear. The Nanling Mountains (NM) is a large subtropical forest and is adjacent to the Pearl River Delta (PRD) region, a well-known hotspot for toluene emissions in southern China. However, unexpectedly low toluene concentrations (0.16 ± 0.20 ppbv) were observed at a mountaintop site in NM during a typical photochemical period. A backward trajectory analysis categorized air masses received at the site into three groups, namely, air masses from the PRD, those from central China, and from clean areas. The results revealed more abundant toluene and its key oxidation products, for example, benzaldehyde in air masses mixed with urban plumes from the PRD. Furthermore, a more than three times faster degradation rate of toluene was found in this category of air masses, indicating more photochemical consumption in NM under PRD outflow disturbance. Compared to the categorized clean and central China plumes, the simulated OH peak level in the PRD plumes (15.8 ± 2.2 × 106 molecule cm-3) increased by approximately 30% and 55%, respectively, and was significantly higher than the reported values at other background sites worldwide. The degradation of toluene in the PRD plumes was most likely accelerated by increased atmospheric oxidative capacity, which was supported by isoprene ozonolysis reactions. Our results indicate that receptor forests around megacities are not only highly polluted by urban plumes, but also play key roles in environmental safety by accelerating the degradation rate of anthropogenic pollutants.

18.
Sci Total Environ ; 816: 151527, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34762944

ABSTRACT

Aerosols in indoor air have various adverse effects on human health. Considering the use of forced ventilation and fan mixing (individually and in combination), the variation in charge number and their effects on aerosol transmission in confined spaces were explored in this study with the distinction of particle sources. In the case of sources originating from the external space, natural penetration acquires a greater number of negative charges. Forced ventilation of a confined space acts on the fate of particles in the neighboring confined space, while the internal fan has a negligible effect on both the number concentration and charge number of particles in the exterior. The combination of forced ventilation and fan mixing increases charge numbers, altering the lifetime of particles in the external regional environment by deposition or adsorption, particularly for neutralized particles. In the case of sources originating from the interior area, application of an internal fan weakens the ventilation effect from forced ventilation, resulting in internal particle loss by depositing on internal surfaces due to electrostatic charge, increasing the potential risk of resuspension. Additionally, source origin is associated with particle fate, and the charge generated under the action of external forces contributes to the transmission pathways and the fate of the particles in the air. This study investigates the transmission pathways and the fate of aerosols from the perspective of charge number, hopefully contributing to an in-depth understanding of the transmission mechanisms of toxic substances in confined spaces with aerosols as carriers.


Subject(s)
Air Pollution, Indoor , Confined Spaces , Aerosols , Humans , Particle Size , Ventilation
19.
Arq. bras. cardiol ; 116(5): 959-967, nov. 2021. tab
Article in English, Portuguese | LILACS | ID: biblio-1248915

ABSTRACT

Resumo Fundamento: Para pacientes com infarto do miocárdio com elevação do segmento ST (IAMCST) que sofrem de obstrução coronariana microvascular funcional e estrutural (OCM) subsequente, nenhuma abordagem terapêutica específica e definitiva de atenuação foi comprovada como válida em testes de larga escala atuais, o que destaca a necessidade de abordar seu reconhecimento precoce. Objetivos: Este estudo teve como objetivo comparar o desempenho de dois escores de risco clínico com uma medida objetiva de OCM durante intervenção coronária percutânea (ICP) em casos de IAMCST Métodos: A medição do índice de resistência microcirculatória (IRM) foi realizada e os parâmetros clínicos e angiográficos basais também foram registrados. Os pacientes foram divididos em entre os grupos OM (obstrução microvascular) e NOM (não-obstrução microvascular), de acordo com o valor de IRM pós-procedimento. O risco de OCM foi avaliado para todos os participantes pelos escores preditivos SAK e ATI, respectivamente. Cada sistema foi calculado somando-se as pontuações de todas as variáveis. As curvas de características do operador receptor (ROC) e a área sob a curva (AUC) de dois modelos de risco foram utilizadas para avaliar o desempenho discriminatório. Um ecocardiograma foi realizado sete dias após o procedimento para avaliar a fração de ejeção do ventrículo esquerdo (FEVE). Um valor P bicaudal de <0,05 foi considerado estatisticamente significativo. Resultados: Entre os 65 pacientes elegíveis com IAMCST, 48 foram alocados no grupo NOM e 17 no grupo OM, com uma incidência de OCM de 26,15%. Não houve diferença significativa na AUC entre os dois escores. A FEVE avaliada para o grupo NOM foi maior do que para o grupo OM. Conclusão: Os escores SAK e ATI tiveram bom desempenho para estimar o risco de OCM após ICP primário para pacientes com IAMCST.


Abstract Background: For patients with ST-segment elevation myocardial infarction (STEMI) that are suffering from subsequent coronary microvascular functional and structural obstruction (CMVO), no specific and definitive therapeutic approaches of attenuation have been proven valid in up-to-date large-scale tests, which highlights the urge to address its early recognition. Objectives: This study aimed to compare the performance of two clinical risk scores with an objective measurement of CMVO during percutaneous coronary intervention (PCI) with STEMI. Methods: The Index of Microcirculatory Resistance (IMR) measurement was conducted and the baseline clinical and angiographic parameters were also recorded. The patients were divided into MO (Microvascular obstruction) or NMO (Non-microvascular obstruction) groups according to the post-procedure IMR value. The CMVO risk was evaluated for all participants by SAK and ATI predictive scores, respectively. Each system was calculated by summing the scores of all variables. The receiver operator characteristic (ROC) curves and the area under the curve (AUC) of two risk models were used to evaluate the discriminatory performance. An echocardiography was performed seven days after the procedure to evaluate left ventricular ejection fraction (LVEF). A two-sided P-value of <0.05 was considered statistically significant. Results: Among the 65 eligible STEMI patients, 48 patients were allocated in the NMO group and 17 in the MO group, with a CMVO incidence of 26.15%. There was no significant difference in the AUC between both scores. The LVEF evaluated for the NMO group was higher than that of MO group. Conclusion: Both SAK and ATI scores performed well in estimating CMVO risk after primary PCI for STEMI patients.


Subject(s)
Humans , Percutaneous Coronary Intervention/adverse effects , ST Elevation Myocardial Infarction/surgery , ST Elevation Myocardial Infarction/diagnostic imaging , Stroke Volume , Risk Factors , Ventricular Function, Left , Treatment Outcome , Coronary Circulation , Microcirculation
20.
Arq Bras Cardiol ; 116(5): 959-967, 2021 05.
Article in English, Portuguese | MEDLINE | ID: mdl-34008822

ABSTRACT

BACKGROUND: For patients with ST-segment elevation myocardial infarction (STEMI) that are suffering from subsequent coronary microvascular functional and structural obstruction (CMVO), no specific and definitive therapeutic approaches of attenuation have been proven valid in up-to-date large-scale tests, which highlights the urge to address its early recognition. OBJECTIVES: This study aimed to compare the performance of two clinical risk scores with an objective measurement of CMVO during percutaneous coronary intervention (PCI) with STEMI. METHODS: The Index of Microcirculatory Resistance (IMR) measurement was conducted and the baseline clinical and angiographic parameters were also recorded. The patients were divided into MO (Microvascular obstruction) or NMO (Non-microvascular obstruction) groups according to the post-procedure IMR value. The CMVO risk was evaluated for all participants by SAK and ATI predictive scores, respectively. Each system was calculated by summing the scores of all variables. The receiver operator characteristic (ROC) curves and the area under the curve (AUC) of two risk models were used to evaluate the discriminatory performance. An echocardiography was performed seven days after the procedure to evaluate left ventricular ejection fraction (LVEF). A two-sided P-value of <0.05 was considered statistically significant. RESULTS: Among the 65 eligible STEMI patients, 48 patients were allocated in the NMO group and 17 in the MO group, with a CMVO incidence of 26.15%. There was no significant difference in the AUC between both scores. The LVEF evaluated for the NMO group was higher than that of MO group. CONCLUSION: Both SAK and ATI scores performed well in estimating CMVO risk after primary PCI for STEMI patients.


FUNDAMENTO: Para pacientes com infarto do miocárdio com elevação do segmento ST (IAMCST) que sofrem de obstrução coronariana microvascular funcional e estrutural (OCM) subsequente, nenhuma abordagem terapêutica específica e definitiva de atenuação foi comprovada como válida em testes de larga escala atuais, o que destaca a necessidade de abordar seu reconhecimento precoce. OBJETIVOS: Este estudo teve como objetivo comparar o desempenho de dois escores de risco clínico com uma medida objetiva de OCM durante intervenção coronária percutânea (ICP) em casos de IAMCST. MÉTODOS: A medição do índice de resistência microcirculatória (IRM) foi realizada e os parâmetros clínicos e angiográficos basais também foram registrados. Os pacientes foram divididos em entre os grupos OM (obstrução microvascular) e NOM (não-obstrução microvascular), de acordo com o valor de IRM pós-procedimento. O risco de OCM foi avaliado para todos os participantes pelos escores preditivos SAK e ATI, respectivamente. Cada sistema foi calculado somando-se as pontuações de todas as variáveis. As curvas de características do operador receptor (ROC) e a área sob a curva (AUC) de dois modelos de risco foram utilizadas para avaliar o desempenho discriminatório. Um ecocardiograma foi realizado sete dias após o procedimento para avaliar a fração de ejeção do ventrículo esquerdo (FEVE). Um valor P bicaudal de <0,05 foi considerado estatisticamente significativo. RESULTADOS: Entre os 65 pacientes elegíveis com IAMCST, 48 foram alocados no grupo NOM e 17 no grupo OM, com uma incidência de OCM de 26,15%. Não houve diferença significativa na AUC entre os dois escores. A FEVE avaliada para o grupo NOM foi maior do que para o grupo OM. CONCLUSÃO: Os escores SAK e ATI tiveram bom desempenho para estimar o risco de OCM após ICP primário para pacientes com IAMCST.


Subject(s)
Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Coronary Circulation , Humans , Microcirculation , Percutaneous Coronary Intervention/adverse effects , Risk Factors , ST Elevation Myocardial Infarction/diagnostic imaging , ST Elevation Myocardial Infarction/surgery , Stroke Volume , Treatment Outcome , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...