Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
1.
ACS Nano ; 18(20): 13333-13345, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717602

ABSTRACT

A persistent inflammatory response, intrinsic limitations in axonal regenerative capacity, and widespread presence of extrinsic axonal inhibitors impede the restoration of motor function after a spinal cord injury (SCI). A versatile treatment platform is urgently needed to address diverse clinical manifestations of SCI. Herein, we present a multifunctional nanoplatform with anisotropic bimodal mesopores for effective neural circuit reconstruction after SCI. The hierarchical nanoplatform features of a Janus structure consist of dual compartments of hydrophilic mesoporous silica (mSiO2) and hydrophobic periodic mesoporous organosilica (PMO), each possessing distinct pore sizes of 12 and 3 nm, respectively. Unlike traditional hierarchical mesoporous nanomaterials with dual-mesopores interlaced with each other, the two sets of mesopores in this Janus nanoplatform are spatially independent and possess completely distinct chemical properties. The Janus mesopores facilitate controllable codelivery of dual drugs with distinct properties: the hydrophilic macromolecular enoxaparin (ENO) and the hydrophobic small molecular paclitaxel (PTX). Anchoring with CeO2, the resulting mSiO2&PMO-CeO2-PTX&ENO nanoformulation not only effectively alleviates ROS-induced neuronal apoptosis but also enhances microtubule stability to promote intrinsic axonal regeneration and facilitates axonal extension by diminishing the inhibitory effect of extracellular chondroitin sulfate proteoglycans. We believe that this functional dual-mesoporous nanoplatform holds significant potential for combination therapy in treating severe multifaceted diseases.


Subject(s)
Spinal Cord Injuries , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Animals , Porosity , Silicon Dioxide/chemistry , Paclitaxel/pharmacology , Paclitaxel/chemistry , Anisotropy , Nerve Regeneration/drug effects , Hydrophobic and Hydrophilic Interactions , Apoptosis/drug effects , Rats , Nanostructures/chemistry , Mice , Particle Size , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology
2.
Chemosphere ; 358: 142238, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705413

ABSTRACT

Predicting the metabolic activation mechanism and potential hazardous metabolites of environmental endocrine-disruptors is a challenging and significant task in risk assessment. Here the metabolic activation mechanism of benzophenone-3 catalyzed by P450 1A1 was investigated by using Molecular Dynamics, Quantum Mechanics/Molecular Mechanics and Density Functional Theory approaches. Two elementary reactions involved in the metabolic activation of BP-3 with P450 1A1: electrophilic addition and hydrogen abstraction reactions were both discussed. Further conversion reactions of epoxidation products, ketone products and the formaldehyde formation reaction were investigated in the non-enzymatic environment based on previous experimental reports. Binding affinities analysis of benzophenone-3 and its metabolites to sex hormone binding globulin indirectly demonstrates that they all exhibit endocrine-disrupting property. Toxic analysis shows that the eco-toxicity and bioaccumulation values of the benzophenone-3 metabolites are much lower than those of benzophenone-3. However, the metabolites are found to have skin-sensitization effects. The present study provides a deep insight into the biotransformation process of benzophenone-3 catalyzed by P450 1A1 and alerts us to pay attention to the adverse effects of benzophenone-3 and its metabolites in human livers.


Subject(s)
Benzophenones , Cytochrome P-450 CYP1A1 , Endocrine Disruptors , Benzophenones/metabolism , Endocrine Disruptors/metabolism , Cytochrome P-450 CYP1A1/metabolism , Quantum Theory , Humans , Molecular Dynamics Simulation , Catalysis , Biotransformation
3.
Chemosphere ; 359: 142228, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705407

ABSTRACT

Copper oxides are vital catalysts in facilitating the formation of polychlorinated thianthrenes/dibenzothiophenes (PCTA/DTs) through heterogeneous reactions in high-temperature industrial processes. Chlorothiophenols (CTPs) are the most crucial precursors for PCTA/DT formation. The initial step in this process is the metal-catalyzed production of chlorothiophenoxy radicals (CTPRs) from CTPs via dissociation reactions. This work combines density functional theory (DFT) calculations with ab initio molecular dynamics (AIMD) simulations to explore the formation mechanism of the adsorbed 2-CTPR from 2-CTP, with the assistance of CuO(111). Our study demonstrates that flat adsorption configurations of 2-CTP on the CuO(111) surface are more stable than vertical configurations. The CuO(111) surface acts as a strong catalyst, facilitating the dissociation of 2-CTP into the adsorbed 2-CTPR. Surface oxygen vacancies enhance the adsorption of 2-CTP on the CuO(111) surface, while moderately suppressing the dissociation of 2-CTP. More importantly, water molecules and surface hydroxyl groups actively promote the dissociation of 2-CTP. Specifically, water directly participates in the reaction through "water bridge", enabling a barrier-free process. This research provides molecular-level insights into the heterogeneous generation of dioxins with the catalysis of metal oxides in fly ash from static and dynamic aspects, providing novel approaches for reducing dioxin emissions and establishing dioxin control strategies.


Subject(s)
Copper , Density Functional Theory , Copper/chemistry , Adsorption , Catalysis , Water/chemistry , Molecular Dynamics Simulation , Hydroxides/chemistry , Surface Properties , Sulfhydryl Compounds/chemistry
4.
Sci Total Environ ; 937: 173182, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740192

ABSTRACT

Organophosphate flame retardants (OPFRs) are widely used as alternatives to brominated flame retardants in a variety of consumer products and their consumption has continuously increased in recent years. However, their concentrations and human exposures in indoor microenvironments, particularly in a university environment, have received limited attention. In this study, the concentrations and seasonal variations of 15 OPFRs were assessed in typical microenvironments of two universities, including dormitories, offices, public microenvironments (PMEs: classroom, dining hall, gymnasium and library), and laboratories on the northern coast of China. Analysis of the OPFRs in both air and dust samples indicated widespread distribution in college campuses. The average concentration of ∑15OPFRs in the winter (12,774.4 ng/g and 5.3 ng/m3 for dust and air, respectively) was higher than in the summer (2460.4 ng/g and 4.6 ng/m3 for dust and air, respectively). The dust and air samples collected from PMEs and laboratories exhibited higher concentrations of OPFRs, followed by offices and dormitories. An equilibrium was reached between dust and air in all collected microenvironments. The daily intakes of OPFRs were significantly lower than the reference dose. Dust ingestion was the primary intake pathway in the winter, while inhalation and dust ingestion were the main intake pathways in the summer. The non-carcinogenic hazard quotients fell within the range of 10-7-10-3 in both the summer and winter, which are below the theoretical risk threshold. For the carcinogenic risk, the LCR values ranged from 10-10 to 10-8, indicating no elevated carcinogenic risk due to TnBP, TCEP, and TDCP in indoor dust and air.

5.
Asian J Neurosurg ; 19(1): 26-36, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38751389

ABSTRACT

Objective Early exposure to niche specialities, like neurosurgery, is essential to inform decisions about future training in these specialities. This study assesses the impact of a hands-on simulated aneurysm clipping workshop on medical students' and junior doctors' perceptions of neurosurgery at a student-organized neurosurgical conference. Methods Ninety-six delegates were sampled from a hands-on workshop involving hydrogel three-dimensional printed aneurysms clipping using surgical microscopes. Consultant neurosurgeons facilitated the workshop. Changes in delegates' perceptions of neurosurgery were collected using Likert scale and free-text responses postconference. Results Postworkshop, 82% of participants reported a positive impact on their perception of neurosurgery. Thematic analysis revealed that delegates valued the hands-on experience, exposure to microsurgery, and interactions with consultant neurosurgeons. Thirty-six of the 96 delegates (37.5%) expressed that the workshop dispelled preconceived fears surrounding neurosurgery and improved understanding of a neurosurgeon's day-to-day tasks. Several delegates initially apprehensive about neurosurgery were now considering it as a career. Conclusion Hands-on simulated workshops can effectively influence medical students' and junior doctors' perceptions of neurosurgery, providing valuable exposure to the specialty. By providing a valuable and immersive introduction to the specialty, these workshops can help to dispel misconceptions, fears, and apprehensions associated with neurosurgery, allowing them to consider the specialty to a greater degree than before. This study of a one-time workshop cannot effectively establish its long-term impact on said perceptions, however.

6.
J Nanobiotechnology ; 22(1): 151, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575943

ABSTRACT

BACKGROUND: As the lethal bone tumor, osteosarcoma often frequently occurs in children and adolescents with locally destructive and high metastasis. Distinctive kinds of nanoplatform with high therapeutical effect and precise diagnosis for osteosarcoma are urgently required. Multimodal optical imaging and programmed treatment, including synergistic photothermal-chemodynamic therapy (PTT-CDT) elicits immunogenetic cell death (ICD) is a promising strategy that possesses high bio-imaging sensitivity for accurate osteosarcoma delineating as well as appreciable therapeutic efficacy with ignorable side-effects. METHODS AND RESULTS: In this study, mesoporous Cu and Ce based oxide nanoplatform with Arg-Gly-Asp (RGD) anchoring is designed and successfully constructed. After loading with indocyanine green, this nanoplatform can be utilized for precisely targeting and efficaciously ablating against osteosarcoma via PTT boosted CDT and the closely following ICD stimulation both in vitro and in vivo. Besides, it provides off-peak fluorescence bio-imaging in the second window of near-infrared region (NIR II, 1000-1700 nm) and Magnetic resonance signal, serves as the dual-mode contrast agents for osteosarcoma tissue discrimination. CONCLUSION: Tumor targeted Cu&Ce based mesoporous nanoplatform permits efficient osteosarcoma suppression and dual-mode bio-imaging that opens new possibility for effectively diagnosing and inhibiting the clinical malignant osteosarcoma.


Subject(s)
Bone Neoplasms , Nanoparticles , Neoplasms , Osteosarcoma , Child , Humans , Adolescent , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Osteosarcoma/diagnostic imaging , Osteosarcoma/therapy , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/drug therapy , Immunotherapy , Cell Line, Tumor , Phototherapy
7.
J Environ Manage ; 357: 120730, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574705

ABSTRACT

Volatile organic compounds (VOCs) significantly contribute to ozone pollution formation, and many VOCs are known to be harmful to human health. Plastic has become an indispensable material in various industries and daily use scenarios, yet the VOC emissions and associated health risks in the plastic manufacturing industry have received limited attention. In this study, we conducted sampling in three typical plastic manufacturing factories to analyze the emission characteristics of VOCs, ozone formation potential (OFP), and health risks for workers. Isopropanol was detected at relatively high concentrations in all three factories, with concentrations in organized emissions reaching 322.3 µg/m3, 344.8 µg/m3, and 22.6 µg/m3, respectively. Alkanes are the most emitted category of VOCs in plastic factories. However, alkenes and oxygenated volatile organic compounds (OVOCs) exhibit higher OFP. In organized emissions of different types of VOCs in the three factories, alkenes and OVOCs contributed 22.8%, 67%, and 37.8% to the OFP, respectively, highlighting the necessity of controlling them. The hazard index (HI) for all three factories was less than 1, indicating a low non-carcinogenic toxic risk; however, there is still a possibility of non-cancerous health risks in two of the factories, and a potential lifetime cancer risk in all of the three factories. For workers with job tenures exceeding 5 years, there may be potential health risks, hence wearing masks with protective capabilities is necessary. This study provides evidence for reducing VOC emissions and improving management measures to ensure the health protection of workers in the plastic manufacturing industry.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , Risk Assessment , Manufacturing Industry , Alkenes , China
8.
Zhongguo Gu Shang ; 37(4): 374-80, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38664208

ABSTRACT

OBJECTIVE: To analyze the correlation between hip joint musculoskeletal ultrasound score and ankylosing spondylitis (AS) disease activity, as well as to investigate the value of high frequency ultrasound in the assessment of hip joint involvement in AS. METHODS: The clinical data of 244 patients with AS who were treated in the rheumatology department of from March 2019 to March 2022 were retrospectively analyzed. Among them, there 174 males and 70 females, aged from 19 to 58 years old with an average of (34.22±9.49) years old;the disease duration of AS patients ranged from 8 months to 26 years, with an average of (13.68±4.04) years.The 244 patients were divided into disease group (83 cases) and control group (161 cases) based in the presence of hip joint involuement. According to the the disease activity, patients in the disease group were further categorezed into active phase (45 cases) and stable phase (38 cases). The ultrasound scores of patients in the active and stable phases of the disease group and the control group were compared. Relevant factors of hip joint involvement in AS patients were analyzed, and analyze the correlation between ultrasound score and Bath ankylosing spondylitis disease activity score index(BASDAI), Bath ankylosing spondylitis functional index(BASFI), visual analogue score of pain (VAS), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and the correlation between hip joint capsule score and tendon attachment end score and BASDAI, BASFI, VAS, CRP and ESR. RESULTS: The hip joint capsule score(3.06±1.12), femoral head score(1.45±0.43), tendon attachment end score(3.28±1.30) and total ultrasound score(6.65±2.31) of the disease group were higher than those of the control group(1.51±0.48)、(0.66±0.27)、(1.61±0.53)、(3.81±1.44)scores (P<0.05). Multifactor Logstic regression analysis showed that the course of disease, hip joint capsule score and total ultrasound score were independent risk factors for hip involvement in AS patients.The hip capsule score (3.65±1.22)and total ultrasound score(8.28±2.33) in the active phase of the disease group were higher than those in the stable phase (2.48±1.04)、( 6.82±1.96)scores(P<0.05). The hip joint capsule score and total ultrasonic score of AS patients were positively correlated with BASDAI, BASFI, VAS, CRP, and ESR (P<0.05, P<0.01).The score of tendon attachment end was positively correlated with CRP (P<0.05). The score of joint capsule effusion in AS patients was positively correlated with BASDAI, BASFI and VAS (P<0.05, P<0.01). The synovial blood flow score was positively correlated with BASDAI, VAS, CRP and ESR (P<0.05, P<0.01). The synovial thickening score was positively correlated with BASDAI, BASFI, VAS, CRP and ESR (P<0.05, P<0.01). There was no correlation between the score of tendon attachment end and BASDAI, BASFI, VAS, CRP and ESR. CONCLUSION: There is a correlation between hip joint ultrasonic score of hip joint and clinical indexes in AS patients.Hip joint capsule score and total ultrasonic score were independent risk factors for hip involvement in AS patients. High frequency ultrasound exhibits clinical value in the diagnosis of hip joint involvement in AS patients.


Subject(s)
Hip Joint , Spondylitis, Ankylosing , Ultrasonography , Humans , Spondylitis, Ankylosing/diagnostic imaging , Male , Female , Adult , Middle Aged , Hip Joint/diagnostic imaging , Young Adult , Retrospective Studies
9.
Environ Sci Technol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668375

ABSTRACT

Pharmaceutically active compounds are an important category of emerging pollutants, and their biological transformation processes in the environment are crucial for understanding and evaluating the migration, transformation, and environmental fate of emerging pollutants. The cytochrome P450 105 enzyme family has been proven to play an important role in the degradation of exogenous environmental pollutants. However, its thermostability and catalytic activity still need to be improved to better adapt to complex environmental conditions. This work elucidates the key mechanisms and important residues of the degradation reaction through multiple computational strategies, establishes a mutation library, and obtains 21 single-point mutation designs. Experimental verification showed that 16 single mutants had enhanced thermostability, with the R89F and L197Y mutants showing the highest increases in thermostability at 135 and 119% relative to the wild-type enzyme, respectively. Additionally, as a result of the higher specific activity of D390Q, it was selected for combination mutagenesis, ultimately resulting in three combination mutants (R89F/L197Y, R89F/D390Q, and R89F/L197Y/D390Q) with enhanced thermostability and catalytic activity. This study provides a modification approach for constructing efficient enzyme variants through semirational design and can contribute to the development of control technologies for emerging pollutants.

10.
Ecotoxicol Environ Saf ; 274: 116186, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38471341

ABSTRACT

Copper plays a crucial role in the heterogenous dissociation of chlorothiophenols (CTPs) to form chlorothiophenoxy radicals (CTPRs), which is the initial and critical step in the formation of polychlorinated thianthrenes/dibenzothiophenes (PCTA/DTs). Here, first-principles calculations were performed to investigate the activity of Cu(111) surface towards the formation of adsorbed 2-CTPR from 2-CTP. The interaction between 2-CTP and Cu(111) surface was explored to find stable adsorption configurations. Besides, the decomposition routes of 2-CTP on the Cu(111) surface were further explored. Moreover, the effects of water on the formation of absorbed 2-CTPR on the Cu(111) surface were examined. Our results demonstrate that the flat adsorption of 2-CTP on the surface with adsorption energy in the range of -33.21 kcal/mol to -28.37 kcal/mol is more stable than the vertical adsorption with adsorption energy ranging from -23.53 kcal/mol to -13.38 kcal/mol. The Cu(111) surface catalyzes the conversion of 2-CTP into the adsorbed 2-CTPR with a modest energy barrier of 9.46 kcal/mol. Furthermore, water molecules exhibit stronger catalytic activity in this process with a decreased energy barrier of 5.87 kcal/mol through "water bridge" and hydrogen bonding. Specifically, the water accepts the hydrogen atom from 2-CTP and donates another hydrogen to the surface via "water bridge". This research provides a molecular-level understanding of the heterogeneous formation of PCTA/DTs by fly ash, suggesting novel approaches for control strategy and legislation of dioxin analogues.


Subject(s)
Coal Ash , Copper , Thiophenes , Density Functional Theory , Hydrogen , Water
11.
Environ Int ; 185: 108487, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38367554

ABSTRACT

Particulate organic nitrates (pONs) have drawn growing interests due to their effects on nitrogen cycling, air pollution, and regional climate. While secondary formation is typically considered as the major source of pONs, direct emissions from various sources remain poorly explored. Ship exhausts have been known as an important source of reactive nitrogen species, yet pONs emissions from ship have been rarely characterized. In this study, we conducted atmospheric measurement of pONs during a ship-based cruise measurement campaign in the East China Sea and also emission measurement of pONs from ship exhausts. During the ship-based cruise, total five typical kinds of pONs were determined and the average total concentrations of five pONs were 479 ± 193 and 250 ± 139 ng m-3 when sampling was influenced by ship emissions or not, respectively, indicating the notable impact of ship exhaust plumes on ambient pONs. Further, five typical pONs were successfully identified and quantified from ship exhausts, with the average total concentration of 1123 ± 406 µg m-3. The much higher pONs levels in ship exhausts than in ambient particulate matters demonstrated ship emission as an important source for pONs. Additionally, their emission factors from ship exhausts were determined as at a range of 0.1-12.6 mg kWh-1. The chemical transport model simulations indicate that direct pONs emissions from ship exert a significant contribution to atmospheric pONs, especially in the clean marine atmosphere. These findings provide compelling evidence for direct emission of pONs from ship and its considerable effects. We call for further studies to better characterize the direct pONs emissions from ship and other potential sources, which should be incorporated into global and regional models.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Ships , Environmental Monitoring , Particulate Matter/analysis , Air Pollution/analysis , Vehicle Emissions/analysis , Dust , Coal , China
12.
Sci Total Environ ; 922: 170736, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38325475

ABSTRACT

Oil extraction leads to environmental pollution from the oilfields and dweller activities, however, knowledge of the concentration distributions, migration, secondary formation and toxicity of nitrated/oxygenated polycyclic aromatic hydrocarbons (N/OPAHs) in oilfield regions is limited. In this research, atmospheric and soil samples in 7 different location types in an important oil industrial base in China were gathered. The ΣNPAHs and ΣOPAHs in the air ranged from 0.05 to 2.47 ng/m3 and 0.14-22.72 ng/m3, respectively, and in soil ranged from 0.22 to 17.81 ng/g and 9.69-66.86 ng/g, respectively. Both NPAHs and OPAHs in the atmosphere exhibited higher concentrations during winter. The atmospheric NPAH concentrations decreased exponentially with distance from urban area especially in the summer, revealing the impact of vehicles on the air in the Yellow River Delta area. High NPAH and OPAH concentrations were found only in soil near oil extraction facilities, indicating that the impact of oil extraction is limited to the soil near the extraction facilities. The air-soil exchanges of N/OPAHs were assessed through fugacity fraction analysis, and NPAHs were in the equilibrium-deposition state and OPAHs were in the net-deposition state in the winter. Higher incremental lifetime cancer risk (ILCR) occurred at the urban, industrial, and oilfield sites in the atmospheric samples, and the soil samples had the largest ILCR values in the oilfield sites. However, ILCR values for both air and soil did not exceed the threshold of 10-6.

13.
Nanotechnology ; 35(21)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38377618

ABSTRACT

MXene, a class of two-dimensional materials that are emerging as rising stars in the field of materials, are receiving much attention in sensing. Ti3C2TxMXene, the most maturely researched MXene, is widely used in energy, biomedical, laser, and microwave shielding applications and has also been expanded to gas sensing and wearable electronics applications. Compared with Ti3C2Tx, Nb2CTxMXene is more difficult to etch and has higher resistances at room temperature; so, few studies have been reported on their use in the sensing field. Based on the preparation of few-layer Nb2CTxMXene by intercalation, this study thoroughly examined their gas-sensing properties. The successfully prepared few-layer Nb2CTxshowed good selectivity and high sensitivity to triethylamine at room temperature, with response values up to 47.2% for 50 ppm triethylamine and short response/recovery time (22/20 s). This study opens an important path for the design of novel Nb-based MXene sensors for triethylamine gas detection.

14.
Sci Total Environ ; 916: 170009, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220017

ABSTRACT

Numerous studies have linked ozone (O3) production to its precursors and fine particulate matter (PM2.5), while the complex interaction effects of PM2.5 and volatile organic compounds (VOCs) on O3 remain poorly understood. A systematic approach based on an interpretable machine learning (ML) model was utilized to evaluate the primary driving factors that impact O3 and to elucidate how changes in PM2.5, VOCs from different sources, NOx, and meteorological conditions either promote or inhibit O3 formation through their individual and synergistic effects in a tropical coastal city, Haikou, from 2019 to 2020. The results suggest that under low PM2.5 levels, alongside the linear O3-PM2.5 relationship observed, O3 formation is suppressed by PM2.5 with higher proportions of traffic-derived aerosol. Vehicle VOC emissions contributed maximally to O3 formation at midday, despite the lowest concentration. VOCs from fossil fuel combustion and industry emissions, which have opposing effects on O3, act as inhibitors and promoters by inducing diverse photochemical regimes. As PM2.5 pollution escalates, the impact of these VOCs reverses, becoming more pronounced in shaping O3 variation. Sensitivity analysis reveals that the O3 formation regime is VOC-limited, and effective regional O3 mitigation requires prioritizing substantial VOC reductions to offset enhanced VOC sensitivity induced by the co-reduction in PM2.5, with a focus on industrial and vehicular emissions, and subsequently, fossil fuel combustion once PM2.5 is effectively controlled. This study underscores the potential of the SHAP-based ML approach to decode the intricate O3-NOx-VOCs-PM2.5 interplay, considering both meteorological and atmospheric compositional variations.

15.
Huan Jing Ke Xue ; 44(11): 6015-6024, 2023 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-37973086

ABSTRACT

To investigate the pollution characteristics and formation mechanism of ambient air ozone(O3) in a typical tropical seaside city, we conducted an observational experiment on O3 and its precursors at an urban site in Haikou, Hainan Province, from June to October 2019. The O3 pollution characteristics were analyzed comprehensively; the O3-NOx-VOCs sensitivities and key precursors were determined, and the control strategies for O3 pollution were carried out. The results were as follows:1 O3 pollution in Haikou mainly occurred in September and October, with daily maximum 8-h O3 concentrations in the range of 39-190 µg·m-3, and the daily variation in O3 was unimodal, peaking at approximately 14:00. 2 The concentrations of NO2 and VOCs were higher during O3 pollution episodes than their respective mean values in Haikou City. The increased O3 precursor concentrations were an important factor leading to O3 pollution, whereas O3 pollution was also influenced by regional transport, with pollutants mainly transported from the northeastern part of Haikou City. 3 O3-NOx-VOCs sensitivity in Haikou City was in the VOCs and NOx transitional regime, and the most sensitive precursors in various months were different. O3 formation in September was sensitive to anthropogenic VOCs the most; however, in October it was sensitive to NOx. 4 In the future, the reduction ratio of VOCs to NOx should be 1:1-4:1 to control O3 pollution effectively in Haikou.

16.
J Nanobiotechnology ; 21(1): 425, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968644

ABSTRACT

BACKGROUND: Chemodynamic therapy (CDT) based on Fenton/Fenton-like reaction has emerged as a promising cancer treatment strategy. Yet, the strong anti-oxidation property of tumor microenvironment (TME) caused by endogenous glutathione (GSH) still severely impedes the effectiveness of CDT. Traditional CDT nanoplatforms based on core@shell structure possess inherent interference of different subunits, thus hindering the overall therapeutic efficiency. Consequently, it is urgent to construct a novel structure with isolated functional units and GSH depletion capability to achieve desirable combined CDT therapeutic efficiency. RESULTS: Herein, a surface curvature-induced oriented assembly strategy is proposed to synthesize a sushi-like novel Janus therapeutic nanoplatform which is composed of two functional units, a FeOOH nanospindle serving as CDT subunit and a mSiO2 nanorod serving as drug-loading subunit. The FeOOH CDT subunit is half covered by mSiO2 nanorod along its long axis, forming sushi-like structure. The FeOOH nanospindle is about 400 nm in length and 50 nm in diameter, and the mSiO2 nanorod is about 550 nm in length and 100 nm in diameter. The length and diameter of mSiO2 subunit can be tuned in a wide range while maintaining the sushi-like Janus structure, which is attributed to a Gibbs-free-energy-dominating surface curvature-induced oriented assembly process. In this Janus therapeutic nanoplatform, Fe3+ of FeOOH is firstly reduced to Fe2+ by endogenous GSH, the as-generated Fe2+ then effectively catalyzes overexpressed H2O2 in TME into highly lethal ·OH to achieve efficient CDT. The doxorubicin (DOX) loaded in the mSiO2 subunit can be released to achieve combined chemotherapy. Taking advantage of Fe3+-related GSH depletion, Fe2+-related enhanced ·OH generation, and DOX-induced chemotherapy, the as-synthesized nanoplatform possesses excellent therapeutic efficiency, in vitro eliminating efficiency of tumor cells is as high as ~ 87%. In vivo experiments also show the efficient inhibition of tumor, verifying the synthesized sushi-like Janus nanoparticles as a promising therapeutic nanoplatform. CONCLUSIONS: In general, our work provides a successful paradigm of constructing novel therapeutic nanoplatform to achieve efficient tumor inhibition.


Subject(s)
Multifunctional Nanoparticles , Neoplasms , Humans , Hydrogen Peroxide , Antineoplastic Combined Chemotherapy Protocols , Doxorubicin/pharmacology , Glutathione , Neoplasms/drug therapy , Cell Line, Tumor , Tumor Microenvironment
17.
Environ Int ; 182: 108332, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37988774

ABSTRACT

Phenylurea herbicides (PUHs) present one of the most important herbicides, which have cause serious effects on ecological environment and humans. Nowadays enzyme strategy shows great advantages in degradation of PUHs. Here density functional theory (DFT), quantitative structure - activity relationship (QSAR) and quantum mechanics/molecular mechanics (QM/MM) approaches are used to investigate the degradation mechanism of PUHs catalyzed by P450 enzymes. Two successive N-demethylation pathways are identified and two hydrogen abstraction (H-abstraction) reaction pathways are identified as the rate-determining step through high-throughput DFT calculations. The Boltzmann-weighted average energy barrier of the second H-abstraction pathway (19.95 kcal/mol) is higher than that of the first H-abstraction pathway (16.80 kcal/mol). Two QSAR models are established to predict the energy barriers of the two H-abstraction pathways based on the quantum chemical descriptors and mordred molecular descriptors. The determination coefficient (R2) values of QSAR models are > 0.9, which reveal that the established QSAR models have great predictive capability. QM/MM calculations indicate that human P450 enzymes are more efficient in degradation of PUHs than crop and weed P450 enzymes. Correlations between energy barriers and key structural/charge parameters are revealed and key parameters that have influence on degradation efficiency of PUHs are identified. This study provides lateral insights into the biodegradation strategy and removal method of PUHs and valuable information for designing or engineering of highly efficient degradation enzymes and genetically modified crops.


Subject(s)
Herbicides , Humans , Herbicides/analysis , Crops, Agricultural/metabolism , Plants, Genetically Modified/metabolism , Cytochrome P-450 Enzyme System/metabolism , Demethylation
18.
Phys Chem Chem Phys ; 25(46): 31596-31603, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37917137

ABSTRACT

A quantum mechanics/molecular mechanics (QM/MM) approach is a broadly used tool in computational enzymology. Treating the QM region with a high-level DFT method is one of the important branches. Here, taking leaf-branch compost cutinase-catalyzed polyethylene terephthalate depolymerization as an example, the convergence behavior of energy barriers as well as key structural and charge features with respect to the size of the QM region (up to 1000 atoms) is systematically investigated. BP86/6-31G(d)//CHARMM and M06-2X/6-311G(d,p)//CHARMM level of theories were applied for geometry optimizations and single-point energy calculations, respectively. Six independent enzyme conformations for all the four catalytic steps (steps (i)-(iv)) were considered. Most of the twenty-four cases show that at least 500 QM atoms are needed while only two rare cases show that ∼100 QM atoms are sufficient for convergence when only a single conformation was considered. This explains why most previous studies showed that 500 or more QM atoms are required while a few others showed that ∼100 QM atoms are sufficient for DFT/MM calculations. More importantly, average energy barriers and key structural/charge features from six conformations show an accelerated convergence than that in a single conformation. For instance, to reach energy barrier convergence (within 2.0 kcal mol-1) for step (ii), only ∼100 QM atoms are required if six conformations are considered while 500 or more QM atoms are needed with a single conformation. The convergence is accelerated to be more rapid if hundreds and thousands of conformations were considered, which aligns with previous findings that only several dozens of QM atoms are required for convergence with semi-empirical QM/MM MD simulations.


Subject(s)
Hydrolases , Polyethylene Terephthalates , Humans , Catalysis , Molecular Conformation , Molecular Dynamics Simulation , Quantum Theory
19.
Environ Sci Technol ; 57(42): 15979-15989, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37821356

ABSTRACT

Aerosol nitrate (NO3-) constitutes a significant component of fine particles in China. Prioritizing the control of volatile organic compounds (VOCs) is a crucial step toward achieving clean air, yet its impact on NO3- pollution remains inadequately understood. Here, we examined the role of VOCs in NO3- formation by combining comprehensive field measurements conducted during the China International Import Expo (CIIE) in Shanghai (from 10 October to 22 November 2018) and multiphase chemical modeling. Despite a decline in primary pollutants during the CIIE, NO3- levels increased compared to pre-CIIE and post-CIIE─NO3- concentrations decreased in the daytime (by -10 and -26%) while increasing in the nighttime (by 8 and 30%). Analysis of the observations and backward trajectory indicates that the diurnal variation in NO3- was mainly attributed to local chemistry rather than meteorological conditions. Decreasing VOCs lowered the daytime NO3- production by reducing the hydroxyl radical level, whereas the greater VOCs reduction at night than that in the daytime increased the nitrate radical level, thereby promoting the nocturnal NO3- production. These results reveal the double-edged role of VOCs in NO3- formation, underscoring the need for transferring large VOC-emitting enterprises from the daytime to the nighttime, which should be considered in formulating corresponding policies.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Nitrates/analysis , Volatile Organic Compounds/analysis , Air Pollutants/analysis , China , Environmental Pollution/analysis , Environmental Monitoring , Ozone/analysis
20.
J Environ Manage ; 347: 119079, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37748297

ABSTRACT

New particle formation (NPF) contributes more than half of the global aerosol. Diethanolamine (DEA) and methyldiethanolamine (MDEA) are the most common amines used to remove CO2 and H2S, which are lost to the atmosphere from CO2 chemical absorbers, livestock and consumer products and are involved in sulfuric acid (SA)-driven NPF. Ion-induced nucleation (IIN) is an important nucleation pathway for NPF. We investigated the role of IIN on DEA and MDEA enhancing SA-driven NPF using density functional method (DFT), molecular dynamics (MD) simulation and atmospheric cluster dynamics code (ACDC). The effects of SO42-, H3O+, NH4+, HSO4-, NO3-, ammonia, methylamine, dimethylamine, trimethylamine and water (W) on the nucleation of SA-DEA were further investigated. The enhancement ability of DEA is greater than that of dimethylamine (DMA) and MDEA. Participation in SA-based NPF is a removal pathway for DEA and MDEA. DEA-SA clusters are generated that not only aggregate DEA and SA molecules, but also increase further growth of atmospheric ions. The very low Gibbs formation free energy highlights the importance of ion-induced nucleation for SA-based NPF. The order of the ability of common atmospheric ions to increase the (SA)(DEA) cluster nucleation is SO42- > H3O+ > NH4+ > HSO4- > NO3-. The addition of 20 water molecules increases the (SA)(DEA)9 cluster from 1.882 nm to 2.053 nm, promoting SA-based NPF. The atmospheric ions accelerate the aggregation rate of the (SA)5(DEA)5 cluster within 15 ns?


Subject(s)
Amines , Carbon Dioxide , Amines/chemistry , Sulfuric Acids/chemistry , Dimethylamines/chemistry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...