Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
Adv Healthc Mater ; : e2400715, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822808

ABSTRACT

Despite advancements in breast cancer treatment, bone metastases remain a significant concern for patients with advanced breast cancer. Current theranostics strategies face challenges in integrating tumor theranostics and bone formation. Herein, we developed an activatable targeted nanomedicine AuMnCO@BSA-N3 (AMCBN) to enable a novel collaborative integration of second near-infrared (NIR-II) fluorescence imaging guided precise theranostics for breast cancer bone metastases and osteogenic microenvironment remolding. This strategy employed a chemical coordination between noble metal complex and metal carbonyl (MnCO). The surface modification of azide groups for enhanced tumor affinity through passive and active targeting. The initiated respondent behavior of AMCBN by tumor microenvironment (H2O2/acidity) accelerate the degradation of coordinated MnCO, resulting in a rapid release of multifunctional agents for efficient chemodynamic therapy (CDT)/gas synergistic therapy. Meanwhile, the exceptional bone-binding properties enable the efficient and controlled release of Mn2+ ions and CO in the bone microenvironment, thereby facilitating the expression of osteogenesis-related proteins and establishing a novel synchronous theranostics process for tumor-bone repair. This article is protected by copyright. All rights reserved.

2.
J Neurosci Methods ; 408: 110181, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823594

ABSTRACT

BACKGROUND: Ex vivo cultures of retinal explants are appropriate models for translational research. However, one of the difficult problems of retinal explants ex vivo culture is that their nutrient supply needs cannot be constantly met. NEW METHOD: This study evaluated the effect of perfused culture on the survival of retinal explants, addressing the challenge of insufficient nutrition in static culture. Furthermore, exosomes secreted from retinal organoids (RO-Exos) were stained with PKH26 to track their uptake in retinal explants to mimic the efficacy of exosomal drugs in vivo. RESULTS: We found that the retinal explants cultured with perfusion exhibited significantly higher viability, increased NeuN+ cells, and reduced apoptosis compared to the static culture group at Days Ex Vivo (DEV) 4, 7, and 14. The perfusion-cultured retinal explants exhibited reduced mRNA markers for gliosis and microglial activation, along with lower expression of GFAP and Iba1, as revealed by immunostaining. Additionally, RNA-sequencing analysis showed that perfusion culture mainly upregulated genes associated with visual perception and photoreceptor cell maintenance while downregulating the immune system process and immune response. RO-Exos promoted the uptake of PKH26-labelled exosomes and the growth of retinal explants in perfusion culture. COMPARISON WITH EXISTING METHODS: Our perfusion culture system can provide a continuous supply of culture medium to achieve steady-state equilibrium in retinal explant culture. Compared to traditional static culture, it better preserves the vitality, provides better neuroprotection, and reduces glial activation. CONCLUSIONS: This study provides a promising ex vivo model for further studies on degenerative retinal diseases and drug screening.

3.
Cancer Immunol Immunother ; 73(7): 132, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753055

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) combined with chemotherapy have become the first-line treatment of metastatic gastric and gastroesophageal adenocarcinomas (GEACs). This study aims to figure out the optimal combined positive score (CPS) cutoff value. METHODS: We searched for randomized phase III trials to investigate the efficacy of ICIs plus chemotherapy for metastatic GEACs compared with chemotherapy alone. Pooled analyses of hazard ratios (HRs) based on PD-L1 expression were performed. RESULTS: A total of six trials (KEYNOTE-062, KEYNOTE-590, KEYNOTE-859, ATTRACTION-04, CheckMate 649, and ORIENT-16) were included, comprising 5,242 patients. ICIs plus chemotherapy significantly improved OS (HR: 0.79, 95% CI 0.72-0.86 in global patients; HR: 0.75, 95% CI 0.57-0.98 in Asian patients) and PFS (HR: 0.74, 95% CI 0.68-0.82 in global patients; HR: 0.64, 95% CI 0.56-0.73 in Asian patients) compared with chemotherapy alone. The differences in OS (ratio of HR: 1.05, 95% CI 0.79-1.40; predictive value: - 5.1%) and PFS (ratio of HR: 1.16, 95% CI 0.98-1.36; predictive value: - 13.5%) were not statistically significant between the global and Asian patients. Subgroup analyses indicated that the optimal CPS threshold was at ≥ 5 for OS and ≥ 10 for PFS with the highest predictive values. CONCLUSIONS: The benefit derived from ICIs plus chemotherapy is similar between Asian and global GEAC patients. However, those with a PD-L1 CPS < 5 or CPS < 10 may not have significant benefits from ICIs therapy. Therefore, it is advisable to routinely assess PD-L1 expression in GEAC patients considered for ICIs treatment.


Subject(s)
Adenocarcinoma , Antineoplastic Combined Chemotherapy Protocols , B7-H1 Antigen , Immune Checkpoint Inhibitors , Receptor, ErbB-2 , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Receptor, ErbB-2/metabolism , Prognosis , Randomized Controlled Trials as Topic , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Clinical Trials, Phase III as Topic , Biomarkers, Tumor/metabolism
4.
Cells ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786064

ABSTRACT

BACKGROUND: Haemonchus contortus is a parasite widely distributed in tropical, subtropical, and warm temperate regions, causing significant economic losses in the livestock industry worldwide. However, little is known about the genetics of H. contortus resistance in livestock. In this study, we monitor the dynamic immune cell responses in diverse peripheral blood mononuclear cells (PBMCs) during H. contortus infection in goats through single-cell RNA sequencing (scRNA-Seq) analysis. METHODS AND RESULTS: A total of four Boer goats, two goats with oral infection with the L3 larvae of H. contortus and two healthy goats as controls, were used in the animal test. The infection model in goats was established and validated by the fecal egg count (FEC) test and qPCR analysis of the gene expression of IL-5 and IL-6. Using scRNA-Seq, we identified seven cell types, including T cells, monocytes, natural killer cells, B cells, and dendritic cells with distinct gene expression signatures. After identifying cell subpopulations of differentially expressed genes (DEGs) in the case and control groups, we observed the upregulation of multiple inflammation-associated genes, including NFKBIA and NFKBID. Kyoto Encyclopedia of the Genome (KEGG) enrichment analysis revealed significant enrichment of NOD-like receptor pathways and Th1/Th2 cell differentiation signaling pathways in CD4 T cells DEGs. Furthermore, the analysis of ligand-receptor interaction networks showed a more active state of cellular communication in the PBMCs from the case group, and the inflammatory response associated MIF-(CD74 + CXCR4) ligand receptor complex was significantly more activated in the case group, suggesting a potential inflammatory response. CONCLUSIONS: Our study preliminarily revealed transcriptomic profiling characterizing the cell type specific mechanisms in host PBMCs at the single-cell level during H. contortus infection.


Subject(s)
Gene Expression Profiling , Goats , Haemonchiasis , Haemonchus , Single-Cell Analysis , Animals , Haemonchus/immunology , Haemonchiasis/veterinary , Haemonchiasis/immunology , Haemonchiasis/genetics , Haemonchiasis/parasitology , Transcriptome/genetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Goat Diseases/immunology , Goat Diseases/parasitology , Goat Diseases/genetics
5.
Org Lett ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815056

ABSTRACT

Thioesterase (TE) domain exerts a great influence over the structure of the final product and TE-released nonreduced polyketides (nrPKs) retain aromaticity. 3-Methylene isochromanones are lactones with a unique olefin at C3 that disrupts the aromaticity, whose biosynthetic details are speculative. Our study unveils the complete biosynthesis of ascochin, in which the construction of the 3-methylene isochromanone backbone is achieved by a nonreducing polyketide synthase (nrPKS) alone and two subsequent oxidations are involved. Intriguingly, the TEAscD serves as a gatekeeper to direct the product release toward formation of nonaromatic 3-methylene isochromanone, rather than the typical aromatic product.

6.
Adv Healthc Mater ; : e2401060, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815213

ABSTRACT

Photothermal therapy (PTT) is a promising approach for treating tumors that offers multiple advantages. Nevertheless, its practical use in clinical settings faces several limitations, such as suboptimal delivery efficiency, uneven heat distribution, and challenges in predicting optimal treatment duration. In addition, the localized hyperthermia generated by the PTT method to induce cell apoptosis can result in the production of excessive reactive oxygen species (ROS) and the release of inflammatory cytokines, which can pose a threat to the healthy tissues surrounding the tumor. To address the above challenges, we designed an integrated H2 delivery nanoplatform for multimodal imaging H2 thermal therapy. The combination of the second near-infrared window (NIR-II) fluorescence imaging (FL) agent (CQ4T) and the photothermal and photoacoustic (PA) properties of Ti3C2 (TC) enables real-time monitoring of the tumor area and guides photothermal treatment. Simultaneously, due to the acid-responsive H2 release characteristics of the nanoplatform, H2 can be utilized for synergistic photothermal therapy to eradicate tumor cells effectively. Significantly, acting as an antioxidant and anti-inflammatory agent, Ti3C2-BSA-CQ4T-H2 (TCBCH) protects peritumoral normal cells from damage. The proposed technique utilizing H2 gas for combination therapies and multimodal imaging integration exhibits prospects for effective and secure treatment of tumors in future clinical applications. This article is protected by copyright. All rights reserved.

7.
Nucleic Acids Res ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783035

ABSTRACT

High-throughput screening rapidly tests an extensive array of chemical compounds to identify hit compounds for specific biological targets in drug discovery. However, false-positive results disrupt hit compound screening, leading to wastage of time and resources. To address this, we propose ChemFH, an integrated online platform facilitating rapid virtual evaluation of potential false positives, including colloidal aggregators, spectroscopic interference compounds, firefly luciferase inhibitors, chemical reactive compounds, promiscuous compounds, and other assay interferences. By leveraging a dataset containing 823 391 compounds, we constructed high-quality prediction models using multi-task directed message-passing network (DMPNN) architectures combining uncertainty estimation, yielding an average AUC value of 0.91. Furthermore, ChemFH incorporated 1441 representative alert substructures derived from the collected data and ten commonly used frequent hitter screening rules. ChemFH was validated with an external set of 75 compounds. Subsequently, the virtual screening capability of ChemFH was successfully confirmed through its application to five virtual screening libraries. Furthermore, ChemFH underwent additional validation on two natural products and FDA-approved drugs, yielding reliable and accurate results. ChemFH is a comprehensive, reliable, and computationally efficient screening pipeline that facilitates the identification of true positive results in assays, contributing to enhanced efficiency and success rates in drug discovery. ChemFH is freely available via https://chemfh.scbdd.com/.

8.
Phys Chem Chem Phys ; 26(22): 15868-15876, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38787703

ABSTRACT

Lifshitz transition was proposed to explain a change of the topology structure in a Fermi surface induced by continuous lattice deformation without symmetry breaking since 1960. It is well known that the anomalies of the kinetic coefficients (the coefficient of heat conduction and electrical conductivity, viscosity, sound absorption, etc.) are usually closely connected with the Lifshitz transition behavior. 2H-TaS2 is a typical representative to study its anomalies of temperature dependence of heat capacity, resistivity, Hall effect, and magnetic susceptibility. Its geometrical structure of the charge density wave (CDW) phase and layer number dependence of carrier-sign alternation upon cooling in the Hall measurements have not been well understood. The geometrical structure (T-Ts) of the CDW phase was predicted through first principles calculations for bulk and mono-layer 2H-TaS2. Driven by electron-lattice coupling, Ta atoms contract to form a partially gapped CDW phase. The CDW phase has a larger average interlayer separation of S-S atoms in the adjacent two layers compared with the metal phase, which results in a weaker chemical bonding among S-S atoms in the adjacent two layers and then a narrower bandwidth of the energy band. The narrower bandwidth of the energy band leads to a larger density of states (DOS) in the out-of-plane direction above the Fermi level for the CDW phase. As the Fermi level continually drops from the DOS region with a negative slope to that with a positive slope on cooling, the reversal of the p → n type carrier and the pocket-vanishing-type Lifshitz transition occur in the bulk 2H-TaS2. However, the Fermi level slightly drops by 6 meV and happens to be at the positions of pseudo band gaps, so the reduction of in-plane DOS and total DOS is responsible for the always p-type carrier in the mono-layer samples. Our CDW vector of the k-space separation between two saddle points is QSP ≈ 0.62 GK and can provide a theoretical support for the "saddle-point" CDW mechanism proposed by Rice and Scott. Our theoretical explanation gives a new understanding of both Lifshitz transition for symmetry breaking and reversal for the p-n carrier sign in the Hall measurements in various two-dimensional transition metal disulfides.

9.
ChemSusChem ; : e202400454, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702899

ABSTRACT

Nitromethane is used as a common solvent, stabilizer, and fuel additive. Nitromethane has also been used as a sustainable building block and convenient reagent in chemical synthesis. In this Minireview, we summarize the recent advances in activation of nitromethane, using nitromethane as the source of cyano group, nitrogen, methylamine, formyl group, C1, nitroso, and oxime.

10.
J Med Chem ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748846

ABSTRACT

Precisely predicting molecular properties is crucial in drug discovery, but the scarcity of labeled data poses a challenge for applying deep learning methods. While large-scale self-supervised pretraining has proven an effective solution, it often neglects domain-specific knowledge. To tackle this issue, we introduce Task-Oriented Multilevel Learning based on BERT (TOML-BERT), a dual-level pretraining framework that considers both structural patterns and domain knowledge of molecules. TOML-BERT achieved state-of-the-art prediction performance on 10 pharmaceutical datasets. It has the capability to mine contextual information within molecular structures and extract domain knowledge from massive pseudo-labeled data. The dual-level pretraining accomplished significant positive transfer, with its two components making complementary contributions. Interpretive analysis elucidated that the effectiveness of the dual-level pretraining lies in the prior learning of a task-related molecular representation. Overall, TOML-BERT demonstrates the potential of combining multiple pretraining tasks to extract task-oriented knowledge, advancing molecular property prediction in drug discovery.

11.
ACS Appl Mater Interfaces ; 16(22): 28980-28990, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38768264

ABSTRACT

Freestanding single-crystalline SrTiO3 membranes, as high-κ dielectrics, hold significant promise as the gate dielectric in two-dimensional (2D) flexible electronics. Nevertheless, the mechanical properties of the SrTiO3 membranes, such as elasticity, remain a critical piece of the puzzle to adequately address the viability of their applications in flexible devices. Here, we report statistical analysis on plane-strain effective Young's modulus of large-area SrTiO3 membranes (5 × 5 mm2) over a series of thicknesses (from 6.5 to 32.2 nm), taking advantage of a highly efficient buckling-based method, which reveals its evident thickness-dependent behavior ranging from 46.01 to 227.17 GPa. Based on microscopic and theoretical results, we elucidate these thickness-dependent behaviors and statistical data deviation with a bilayer model, which consists of a surface layer and a bulk-like layer. The analytical results show that the ∼3.1 nm surface layer has a significant elastic softening compared to the bulk-like layer, while the extracted modulus of the bulk-like layer shows a variation of ∼40 GPa. This variation is considered as a combined contribution from oxygen deficiency presenting in SrTiO3 membranes, and the alignment between applied strain and the crystal orientation. Upon comparison of the extracted elastic properties and electrostatic control capability to those of other typical gate dielectrics, the superior performance of single-crystalline SrTiO3 membranes has been revealed in the context of flexible gate dielectrics, indicating the significant potential of their application in high-performance flexible 2D electronics.

12.
Mater Today Bio ; 26: 101052, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38628351

ABSTRACT

Advanced stages of breast cancer are frequently complicated by bone metastases, which cause significant cancer-related bone destruction and mortality. However, the early precise theranostics of bone metastasis remains a formidable challenge in clinical practice. Herein,a novel all-in-one nanotheranostic system (ABI NYs) combining NIR-II FL/PA dual-modal imaging with photothermal-immunity therapeutic functionalities in one component was designed to precisely localize bone metastasis microscopic lesions and achieve complete tumor ablation at an early stage. The surface modification of the nanosystem with ibandronate (IBN) facilitates both passive and active targeting, significantly improving the detection rate of bone metastasis and suppressing the bone resorption. Superior photothermal performance produces sufficient heat to kill tumor cells while stimulating the upregulation of heat shock proteins 70 (HSP70), which triggers the immunogenic cell death (ICD) effect and the anti-tumor immune response. These all-in-one nanosystems precisely demonstrated early lesion localization in bone metastases and total tumor ablation with a single integration via "one-component, multi-functions" technique. To sum up, ABI NYs, as novel biomineralizing nanosystems integrated with anti-tumor and bone repair, present a synergistic therapy strategy, providing insight into the theranostics of bone metastases and clinical research.

13.
Adv Mater ; : e2402575, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631046

ABSTRACT

Organic photovoltaic (OPV) technology holds tremendous promise as a sustainable power source for underwater off-grid systems. However, research on underwater OPV cells is relatively scarce. Here, this gap is addressed by focusing on the exploration and development of OPV cells specifically designed for underwater applications. An acceptor, named ITO-4Cl, with excellent water resistance, is rationally designed and synthesized. Benefiting from its low energetic disorder and an absorption spectrum well-suited to the underwater environment, the ITO-4Cl-based OPV cell achieves an unprecedented power conversion efficiency (PCE) of over 25.6% at a water depth of 1 m. Additionally, under 660 nm laser irradiation, the cell demonstrates a notable PCE of 31.6%, indicating its potential for underwater wireless energy transfer. Due to the mitigation of thermal effects from solar irradiation, the lifetime of the ITO-4Cl-based OPV cell exceeds 7000 h. Additionally, a flexible OPV cell is fabricated that maintains its initial PCE even under exposure to high pressures of 5 MPa. A 32.5 cm2 flexible module achieves an excellent PCE of 17%. This work fosters a deeper understanding of underwater OPV cells and highlights the promising prospects of OPV cells for underwater applications.

14.
Nucleic Acids Res ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572755

ABSTRACT

ADMETlab 3.0 is the second updated version of the web server that provides a comprehensive and efficient platform for evaluating ADMET-related parameters as well as physicochemical properties and medicinal chemistry characteristics involved in the drug discovery process. This new release addresses the limitations of the previous version and offers broader coverage, improved performance, API functionality, and decision support. For supporting data and endpoints, this version includes 119 features, an increase of 31 compared to the previous version. The updated number of entries is 1.5 times larger than the previous version with over 400 000 entries. ADMETlab 3.0 incorporates a multi-task DMPNN architecture coupled with molecular descriptors, a method that not only guaranteed calculation speed for each endpoint simultaneously, but also achieved a superior performance in terms of accuracy and robustness. In addition, an API has been introduced to meet the growing demand for programmatic access to large amounts of data in ADMETlab 3.0. Moreover, this version includes uncertainty estimates in the prediction results, aiding in the confident selection of candidate compounds for further studies and experiments. ADMETlab 3.0 is publicly for access without the need for registration at: https://admetlab3.scbdd.com.

15.
Article in English | MEDLINE | ID: mdl-38682240

ABSTRACT

Negative pressure wound therapy (NPWT) is extensively employed in clinical settings to enhance the healing of wounds. Despite its widespread use, the molecular mechanisms driving the efficacy of NPWT have not been fully elucidated. In this study, skin wound-healing models were established, with administration of NPWT. Vimentin, collagen I, and MMP9 of skin tissues were detected by immunofluorescence (IF). Gene expression analysis of skin wound tissues was performed by RNA-sequencing (RNA-seq). Protein expression was assayed by a western blotting or IF assay, and mRNA levels were quantified by quantitative PCR. Chromatin accessibility profiles of fibroblasts following NPWT or IL-17 exposure were analyzed by ATAC-seq. In rat wound-healing models, NPWT promoted wound repair by promoting re-epithelialization, extracellular matrix (ECM) synthesis and proliferation, which mainly occurred in the early stage of wound healing. These differentially expressed genes (DEGs) in NPWT wounds versus control wounds were enriched in the IL-17 signaling pathway. IL-17 was identified as an up-regulated factor following NPWT in skin wounds. Moreover, the IL-17 inhibitor secukinumab (SEC) could abolish the promoting effect of NPWT on wound healing. Importantly, chromatin accessibility profiles were altered following NPWT and IL-17 stimulation in skin fibroblasts. Our findings suggest that NPWT upregulates IL-17 to promote wound healing by altering chromatin accessibility, which is a novel mechanism for NPWT's efficacy in wound healing.

16.
Biomed Pharmacother ; 174: 116553, 2024 May.
Article in English | MEDLINE | ID: mdl-38593703

ABSTRACT

This study is to investigate the effect of SPS on the UC model. An animal model of UC induced by DSS was developed using C57BL/6 mice. The body weight was recorded every day, and the symptoms related to UC were detected. H&E staining, AB-PAS staining and PSR staining were used to evaluate the histopathological changes of the colon. Inflammation and mucosal barrier indicators were detected by qRT-PCR, and the 16 S rRNA sequence was used to detect the intestinal flora. SPS can significantly prevent and treat DSS-induced ulcerative colitis in animals. SPS significantly improved clinical symptoms, alleviated pathological damage, inhibited the infiltration of intestinal inflammatory cells. SPS treatment can protect goblet cells, enhance the expression of tight junction proteins and mucins, inhibit the expression of antimicrobial peptides, thereby improving intestinal barrier integrity. The prevention and treatment mechanism of SPS may be related to the inhibition of STAT3/NF-κB signaling pathway to regulate intestinal barrier function. In particular, SPS also significantly adjusted the structure of intestinal flora, significantly increasing the abundance of Akkermansia and Limosilactobacillus and inhibiting the abundance of Bacteroides. Overall, SPS has a significant therapeutic effect on ulcerative colitis mice, and is expected to play its value effectively in clinical treatment.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Intestinal Mucosa , Mice, Inbred C57BL , NF-kappa B , Polysaccharides , STAT3 Transcription Factor , Signal Transduction , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/microbiology , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , NF-kappa B/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Polysaccharides/pharmacology , Polysaccharides/isolation & purification , Mice , Male , Gastrointestinal Microbiome/drug effects , Dextran Sulfate , Disease Models, Animal , Colon/drug effects , Colon/pathology , Colon/metabolism , Intestinal Barrier Function
17.
Angew Chem Int Ed Engl ; 63(17): e202401066, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38450828

ABSTRACT

In the field of organic photovoltaics (OPVs), significant progress has been made in tailoring molecular structures to enhance the open-circuit voltage and the short-circuit current density. However, there remains a crucial gap in the development of coordinated material design strategies focused on improving the fill factor (FF). Here, we introduce a molecular design strategy that incorporates electrostatic potential fluctuation to design organic photovoltaic materials. By reducing the fluctuation amplitude of IT-4F, we synthesized a new acceptor named ITOC6-4F. When using PBQx-TF as a donor, the ITOC6-4F-based cell shows a markedly low recombination rate constant of 0.66×10-14 cm3 s-1 and demonstrates an outstanding FF of 0.816, both of which are new records for binary OPV cells. Also, we find that a small fluctuation amplitude could decrease the energetic disorder of OPV cells, reducing energy loss. Finally, the ITOC6-4F-based cell creates the highest efficiency of 16.0 % among medium-gap OPV cells. Our work holds a vital implication for guiding the design of high-performance OPV materials.

18.
Neural Regen Res ; 19(10): 2119-2131, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38488547

ABSTRACT

Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.

19.
J Chem Inf Model ; 64(8): 3222-3236, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38498003

ABSTRACT

Liver microsomal stability, a crucial aspect of metabolic stability, significantly impacts practical drug discovery. However, current models for predicting liver microsomal stability are based on limited molecular information from a single species. To address this limitation, we constructed the largest public database of compounds from three common species: human, rat, and mouse. Subsequently, we developed a series of classification models using both traditional descriptor-based and classic graph-based machine learning (ML) algorithms. Remarkably, the best-performing models for the three species achieved Matthews correlation coefficients (MCCs) of 0.616, 0.603, and 0.574, respectively, on the test set. Furthermore, through the construction of consensus models based on these individual models, we have demonstrated their superior predictive performance in comparison with the existing models of the same type. To explore the similarities and differences in the properties of liver microsomal stability among multispecies molecules, we conducted preliminary interpretative explorations using the Shapley additive explanations (SHAP) and atom heatmap approaches for the models and misclassified molecules. Additionally, we further investigated representative structural modifications and substructures that decrease the liver microsomal stability in different species using the matched molecule pair analysis (MMPA) method and substructure extraction techniques. The established prediction models, along with insightful interpretation information regarding liver microsomal stability, will significantly contribute to enhancing the efficiency of exploring practical drugs for development.


Subject(s)
Artificial Intelligence , Microsomes, Liver , Microsomes, Liver/metabolism , Animals , Mice , Rats , Humans , Machine Learning , Drug Discovery/methods , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...