Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26727, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486729

ABSTRACT

Natural hyperbolic materials can confine electromagnetic waves at the nanoscale. In this study, we propose a waveguide design that combines a high quality factor (FOM) with low loss, utilizing hexagonal boron nitride and graphene and gold substrate. The waveguide consists of a dielectric rib with a graphene layer sandwiched between two hBN ribs. Numerical simulations demonstrate the existence of two guided modes in the proposed waveguide within the second reststrahlen band (1360.0 cm-1<ω < 1609.8 cm-1) of hBN. These modes are formed by coupling the hyperbolic phonon polariton (HPhP) of two hBN rib in the middle dielectric rib and are subsequently modulated by a graphene layer. Interestingly, we observe variations in four transmission parameters, namely effective length, figure of merit, device length, and propagation loss of the guided modes, with respect to the operation frequency and gate voltage. By optimizing the waveguide's geometry parameters and dielectric permittivity, the modal properties were analyzed. Simulation results indicate that optimizing the waveguide size parameters enables us to achieve a high FOM of 4.0 × 107. The proposed waveguide design offers a promising approach for designing tunable mid infrared range waveguides on photonic chips, and this concept can be extended to other 2D materials and hyperbolic materials.

2.
Opt Express ; 30(18): 32474-32482, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242308

ABSTRACT

We investigated the spin angular momentum (SAM) and nonreciprocity of ghost surface polariton (GSP) at the surface of an antiferromagnet (AF) in the normal geometry, where the AF easy axis and external field (H0) both are normal to the AF surface. We found that the dispersion equation is invariant when the inversions of wavevector and external magnetic field, k→-k and H0→-H0, are taken. However, its polarization and SAM are nonreciprocal. The SAM is vertical to the propagation direction of GSP, and consists of two components. We analytically found that the in-plane component is locked to H0, or it is changed in sign due to the inversion of H0. The out-plane one is locked to k since it is changed in sign as the inversion of k is taken. Either component contains an electric part and a magnetic part. Above the AF surface, the two electric parts form the left-handed triplet with the wavevector k, but the two magnetic parts form the right-handed triplet with k. In the AF, the chirality of the SAM changes with the distance from the surface. The SAM is very large on or near the surface and it may be very interesting for the manipulation of micron and nano particles on the AF surface. These are obviously different from the relevant features of conventional surface polaritons. The SAM also is field-tunable.

3.
Opt Express ; 29(24): 39125-39136, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809282

ABSTRACT

A linearly-polarized radiation can be considered as the superposition of two circularly-polarized components with the same propagating direction and opposite spins. We investigated the splitting between the two spin-components in the reflective beam off the antiferromagnetic surface. The gyromagnetism and surface impedance mismatch cause the difference between the spatial shifts of the two spin-components, i.e., the spin-splitting. We analytically achieved the in- and out-plane shift-expressions of either spin-component for two typical linearly-polarized incident beams (i.e., the p- and s-incidences). In the case of no gyromagnetism, we obtained very simple shift-expressions, which indicate a key role played by the gyromagnetism or the surface impedance-mismatch in spin-splitting. Based on a FeF2 crystal, the spin-splitting distance was calculated. The spin-splitting distance is much longer for the p-incidence than the s-incidence, and meanwhile the in-plane splitting distance is much larger than the out-plane one. The gyromagnetism plays a key role for the in-plane spin-splitting and the surface impedance-mismatch is a crucial factor for the out-plane spin-splitting distance. The results are useful for the manipulation of infrared radiations and infrared optical detection.

4.
Opt Express ; 28(17): 25048-25059, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32907035

ABSTRACT

We investigated Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts on a uniaxial hyperbolic crystal, where a circularly-polarized beam was incident on the crystal from the free space. The GH- and IF-shifts were analytically obtained and numerically calculated for the hexagonal boron nitride. Our results demonstrate that the GH- and IF-shift spectra are complicated and completely different in and out the hyperbolic frequency-bands (the reststrahlen bands in the infrared region). At the critical or Brewster angle, concisely analytical expressions of GH-shift was found, which explicitly state the optical-loss dependence of GH-shift at these special angles. We found the GH-shifts are very large at the critical and Brewster angles. It is very necessary to know these effects since hyperbolic materials are usually applied in the nano- and micro-optics or technology fields.

5.
Opt Express ; 28(13): 19205-19217, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32672202

ABSTRACT

Three Dyakonov-like polaritons (DLPs) exist at the interface between a hyperbolic material (HM) and a covering medium (CM). Each DLP is a hybridized-polarization surface polariton composed of two evanescent waves on both sides of the interface. We investigated their spin and angular momentum. We analytically found that any DLP carries two spins producing mutually orthogonal spin angular-momentum (SAM) components. The spins and angular-momentum have different features on both sides of the interface, and further differences among the three DLPs are very obvious. For the interface structure formed by hexagonal boron nitride (hBN) and air, the SAM mainly distributes in the air for DLP-I, the SAM is approximately transverse to the propagating direction for DLP-II, and it is surprisingly large in the hBN for DLP-III and can reach several ten times that in the usual situation. There is the spin-k locking for every DLP, but the spin-k locking is different for different DLPs. These properties do not exist for traditional surface polaritons or ordinary evanescent waves. The above unique results can support some potential applications in the fields of nano- and micro-photonics, optoelectronics and mechanics, as well as relevant technologies.

6.
J Nanosci Nanotechnol ; 18(4): 2766-2774, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29442955

ABSTRACT

The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...