Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(16): 28795-28804, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299068

ABSTRACT

High power 1.5 µm band fiber lasers are of great importance for many practical applications. Generally, the technical targets including high average output power, narrow linewidth, temporally suppressed intensity dynamics, high spectral purity, single transverse mode lasing, and excellent robustness are the major concerns when constructing a high-performance laser source. Here, we demonstrate the highest output power of a wavelength tunable 1.5 µm band random fiber laser based on the active fiber gain mechanism to the best of our knowledge. A master oscillator power-amplifier (MOPA) configuration is employed to greatly boost the output power to 20 watt-level with a single transverse mode lasing and the same linewidth as the seed, benefiting from the spectral broadening free feature when employing the random fiber laser as the seed. This work not only enriches the progress of random fiber laser, but also provides an attractive alternative in realizing high performance lasing light source at 1.5 µm band.

2.
World J Clin Cases ; 10(25): 9036-9043, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36157667

ABSTRACT

BACKGROUND: Ochronotic arthropathy (OcA) is a rare disease, which is caused by the accumulation of homogentisic acid in the joint. Patients with OcA have obvious joint pain and the disease progresses rapidly, eventually resulting in disability. Arthroplasty is an efficacious treatment in patients with OcA. However, when OcA patients have joint infection, is joint replacement an option? In the present report, we performed total knee arthroplasty in a patient with OcA and knee infection under the guidance of one-stage revision theory. CASE SUMMARY: A 64-year-old male was referred to our hospital due to severe left knee pain with limited mobility for 2 years. On physical examination, the patient was found to have dark brown pigmentation of the sclera and auricle. Laboratory test results showed elevations in C-reactive protein level (65.79 mg/L) and erythrocyte sedimentation rate (90.00 mm/h). The patient underwent debridement of the left knee joint, during which the cartilage surface of the knee joint was found to be black-brown in color. Bacterial culture of synovial fluid revealed Achromobacter xylosoxidans. We then carried out arthroplasty under the guidance of the theory of one-stage revision. After surgery, the patient's left knee joint pain disappeared and function recovered without joint infection. CONCLUSION: OcA accompanied by joint infection is rare. One-stage revision arthroplasty may be a treatment option for this disease.

3.
BMB Rep ; 52(9): 566-571, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31401980

ABSTRACT

Lymphoma is one of the most curable types of cancer. However, drug resistance is the main challenge faced in lymphoma treatment. Peroxisomal acyl-CoA oxidase 1 (ACOX1) is the rate-limiting enzyme in fatty acid ß-oxidation. Deregulation of ACOX1 has been linked to peroxisomal disorders and carcinogenesis in the liver. Currently, there is no information about the function of ACOX1 in lymphoma. In this study, we found that upregulation of ACOX1 promoted proliferation in lymphoma cells, while downregulation of ACOX1 inhibited proliferation and induced apoptosis. Additionally, overexpression of ACOX1 increased resistance to doxorubicin, while suppression of ACOX1 expression markedly potentiated doxorubicin-induced apoptosis. Interestingly, downregulation of ACOX1 promoted mitochondrial location of Bad, reduced mitochondrial membrane potential and provoked apoptosis by activating caspase-9 and caspase-3 related apoptotic pathway. Overexpression of ACOX1 alleviated doxorubicin-induced activation of caspase-9 and caspase-3 and decrease of mitochondrial membrane potential. Importantly, downregulation of ACOX1 increased p73, but not p53, expression. p73 expression was critical for apoptosis induction induced by ACOX1 downregulation. Also, overexpression of ACOX1 significantly reduced stability of p73 protein thereby reducing p73 expression. Thus, our study indicated that suppression of ACOX1 could be a novel and effective approach for treatment of lymphoma. [BMB Reports 2019; 52(9): 566-571].


Subject(s)
Acyl-CoA Oxidase/metabolism , Doxorubicin/pharmacology , Lymphoma/metabolism , Tumor Protein p73/metabolism , Acyl-CoA Oxidase/genetics , Apoptosis/drug effects , Apoptosis/physiology , Blotting, Western , Caspase 3/metabolism , Caspase 9/metabolism , HEK293 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Tumor Protein p73/genetics
4.
Cancer Cell Int ; 19: 153, 2019.
Article in English | MEDLINE | ID: mdl-31171917

ABSTRACT

BACKGROUND: Lymphoma is one of the most common hematologic malignancy. Drug resistance is the main obstacle faced in lymphoma treatment. Cancer stem cells are considered as the source of tumor recurrence, metastasis and drug resistance. The ß-Asarone, a low-toxicity compound from the traditional medical herb Acorus calamus, has been shown to act as an anti-cancer reagent in various cancer types. However, the anti-cancer activities of ß-Asarone in lymphoma have not been shown. METHODS: Cell counting assay was used to evaluate Raji cell proliferation. CCK8 assay was used to evaluate the cell viability. Annexin-V/PI staining and flow cytometry analysis were used to evaluate apoptosis. ALDEFLUOR assay was used to evaluate the stem-like population. Luciferase reporter assay was used to examine the activation of NF-κB signaling. Western blot and polymerase chain reaction (PCR) were used to determine the expression of interested genes. RESULTS: We showed that ß-Asarone inhibited proliferation and induced apoptosis in Raji lymphoma cells in a dose-dependent manner. Additionally, ß-Asarone functioned as a sensitizer of doxorubicin and resulted in synergistic effects on inhibition of proliferation and induction of apoptosis when combined with doxorubicin treatment. Interestingly, we found that ß-Asarone also reduced the stem-like population of Raji lymphoma cells in a dose-dependent manner, and suppressed the expression of c-Myc and Bmi1. Importantly, ß-Asarone abolished doxorubicin-induced enrichment of the stem-like population. In the mechanism study, we revealed that ß-Asarone suppressed not only basal NF-κB activity but also Tumor necrosis factor α (TNF-α) induced NF-κB activity. Moreover, blocking NF-κB signaling inactivation was critical for ß-Asarone induced apoptosis and inhibition of proliferation, but not for the effect on ß-Asarone reduced stem-like population. In fact, ß-Asarone suppressed stem-like population by destabilizing Bmi1 via a proteasome-mediated mechanism. CONCLUSIONS: Our data suggested the application of ß-Asarone to lower the toxic effect of doxorubicin and increase the sensitivity of doxorubicin in clinical treatment. More importantly, our data revealed a novel role of ß-Asarone which could be used to eliminate stem-like population in lymphoma, implying that ß-Asarone might reduce relapse and drug resistance.

5.
Cell Death Dis ; 9(11): 1120, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30389909

ABSTRACT

Estrogen receptor ß (ERß) plays critical roles in thyroid cancer progression. However, its role in thyroid cancer stem cell maintenance remains elusive. Here, we report that ERß is overexpressed in papillary thyroid cancer stem cells (PTCSCs), whereas ablation of ERß decreases stemness-related factors expression, diminishes ALDH+ cell populations, and suppresses sphere formation ability and tumor growth. Screening estrogen-responsive lncRNAs in PTC spheroid cells, we find that lncRNA-H19 is highly expressed in PTCSCs and PTC tissue specimens, which is correlated with poor overall survival. Mechanistically, estradiol (E2) significantly promotes H19 transcription via ERß and elevates H19 expression. Silencing of H19 inhibits E2-induced sphere formation ability. Furthermore, H19 acting as a competitive endogenous RNA sequesters miRNA-3126-5p to reciprocally release ERß expression. ERß depletion reverses H19-induced stem-like properties upon E2 treatment. Appropriately, ERß is upregulated in PTC tissue specimens. Notably, aspirin attenuates E2-induced cancer stem-like traits through decreasing both H19 and ERß expression. Collectively, our findings reveal that ERß-H19 positive feedback loop has a compelling role in PTCSC maintenance under E2 treatment and provides a potential therapeutic targeting strategy for PTC.


Subject(s)
Estrogen Receptor beta/genetics , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/metabolism , RNA, Long Noncoding/genetics , Thyroid Cancer, Papillary/genetics , Thyroid Neoplasms/genetics , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Animals , Antineoplastic Agents/pharmacology , Aspirin/pharmacology , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Estradiol/pharmacology , Estrogen Receptor beta/metabolism , Feedback, Physiological , Female , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , RNA, Long Noncoding/metabolism , Signal Transduction , Survival Analysis , Thyroid Cancer, Papillary/drug therapy , Thyroid Cancer, Papillary/mortality , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/mortality , Thyroid Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...