Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
JACC Basic Transl Sci ; 9(3): 281-299, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38559626

ABSTRACT

The authors conducted transcardiac blood sampling in healthy subjects and subjects with heart failure with preserved ejection fraction (HFpEF) to compare cardiac metabolite and lipid substrate use. We demonstrate that fatty acids are less used by HFpEF hearts and that lipid extraction is influenced by hemodynamic factors including pulmonary pressures and cardiac index. The release of many products of protein catabolism is apparent in HFpEF compared to healthy myocardium. In subgroup analyses, differences in energy substrate use between female and male hearts were identified.

2.
Circ Res ; 132(7): 812-827, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36876485

ABSTRACT

BACKGROUND: The rupture of atherosclerotic plaque contributes significantly to cardiovascular disease. Plasma concentrations of bilirubin-a byproduct of heme catabolism-inversely associate with risk of cardiovascular disease, although the link between bilirubin and atherosclerosis remains unclear. METHODS: To assess the role of bilirubin in atherosclerotic plaque stability, we crossed Bvra-/- with Apoe-/- mice and used the tandem stenosis model of plaque instability. Human coronary arteries were obtained from heart transplant recipients. Analysis of bile pigments, heme metabolism, and proteomics were performed by liquid chromatography tandem mass spectrometry. MPO (myeloperoxidase) activity was determined by in vivo molecular magnetic resonance imaging, liquid chromatography tandem mass spectrometry analysis, and immunohistochemical determination of chlorotyrosine. Systemic oxidative stress was evaluated by plasma concentrations of lipid hydroperoxides and the redox status of circulating Prx2 (peroxiredoxin 2), whereas arterial function was assessed by wire myography. Atherosclerosis and arterial remodeling were quantified by morphometry and plaque stability by fibrous cap thickness, lipid accumulation, infiltration of inflammatory cells, and the presence of intraplaque hemorrhage. RESULTS: Compared with Bvra+/+Apoe-/- tandem stenosis littermates, Bvra-/-Apoe-/- tandem stenosis mice were deficient in bilirubin, showed signs of increased systemic oxidative stress, endothelial dysfunction, as well as hyperlipidemia, and had a higher atherosclerotic plaque burden. Heme metabolism was increased in unstable compared with stable plaque of both Bvra+/+Apoe-/- and Bvra-/-Apoe-/- tandem stenosis mice and in human coronary plaques. In mice, Bvra deletion selectively destabilized unstable plaque, characterized by positive arterial remodeling and increased cap thinning, intraplaque hemorrhage, infiltration of neutrophils, and MPO activity. Proteomic analysis confirmed Bvra deletion enhanced extracellular matrix degradation, recruitment and activation of neutrophils, and associated oxidative stress in unstable plaque. CONCLUSIONS: Bilirubin deficiency, resulting from global Bvra deletion, generates a proatherogenic phenotype and selectively enhances neutrophil-mediated inflammation and destabilization of unstable plaque, thereby providing a link between bilirubin and cardiovascular disease risk.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Plaque, Atherosclerotic , Humans , Animals , Mice , Plaque, Atherosclerotic/pathology , Bilirubin , Constriction, Pathologic , Proteomics , Atherosclerosis/metabolism , Antioxidants , Hemorrhage , Heme , Apolipoproteins E , Lipids , Disease Models, Animal
4.
Neuropsychopharmacology ; 42(11): 2222-2231, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28272498

ABSTRACT

Cannabis use increases rates of psychotic relapse and treatment failure in schizophrenia patients. Clinical studies suggest that cannabis use reduces the efficacy of antipsychotic drugs, but there has been no direct demonstration of this in a controlled study. The present study demonstrates that exposure to the principal phytocannabinoid, Δ9-tetrahydrocannabinol (THC), reverses the neurobehavioral effects of the antipsychotic drug risperidone in mice. THC exposure did not influence D2 and 5-HT2A receptor binding, the major targets of antipsychotic action, but it lowered the brain concentrations of risperidone and its active metabolite, 9-hydroxy risperidone. As risperidone and its active metabolite are excellent substrates of the ABC transporter P-glycoprotein (P-gp), we hypothesized that THC might increase P-gp expression at the blood-brain barrier (BBB) and thus enhance efflux of risperidone and its metabolite from brain tissue. We confirmed that the brain disposition of risperidone and 9-hydroxy risperidone is strongly influenced by P-gp, as P-gp knockout mice displayed greater brain concentrations of these drugs than wild-type mice. Furthermore, we demonstrated that THC exposure increased P-gp expression in various brain regions important to risperidone's antipsychotic action. We then showed that THC exposure did not influence the neurobehavioral effects of clozapine. Clozapine shares a very similar antipsychotic mode of action to risperidone, but unlike risperidone is not a P-gp substrate. Our results imply that clozapine or non-P-gp substrate antipsychotic drugs may be better first-line treatments for schizophrenia patients with a history of cannabis use.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Antipsychotic Agents/pharmacology , Brain/metabolism , Gene Expression Regulation/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Brain/drug effects , Clozapine/pharmacology , Dose-Response Relationship, Drug , Dronabinol/pharmacology , Gene Expression Regulation/genetics , Locomotion/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Binding/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Raclopride/pharmacokinetics , Receptor, Serotonin, 5-HT2A/metabolism , Receptors, Dopamine D2/metabolism , Reflex, Startle/drug effects , Risperidone/pharmacology , Time Factors , Tritium/pharmacokinetics
5.
Arch Biochem Biophys ; 612: 103-114, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27789204

ABSTRACT

Myocardial inflammation following acute myocardial infarct (AMI) is associated with risk of congestive heart failure. Pro-inflammatory neutrophils were recruited to the damaged myocardium 24 h after permanent coronary ligation in rats to induce AMI as judged by the presence of immune-positive myeloperoxidase (MPO) in the tissues; MPO generates the oxidant hypochlorous acid (HOCl). Neutrophils were absent in hearts from Control (untreated) and surgical Sham. Similarly, rats exposed to 1 h coronary ligation (Ischemia) showed no neutrophil infiltrate. Concomitantly, MPO activity increased in left ventricular (LV) homogenates prepared from the AMI group and this was inhibited by paracetamol and the nitroxide TEMPO. The same LV-homogenates showed increased 3-chlorotyrosine/tyrosine ratios (biomarker for MPO-activity). Combined 2D gel/Western blot indicated cardiac myoglobin (Mb) was modified after AMI. Subsequent MALDI-TOF and LC-MS/MS analysis of isolated protein spots revealed increased Mb oxidation in hearts from the AMI group relative to Control, Sham and Ischemia groups. Peptide mass mapping revealed oxidation of Met9 and Met132 to the corresponding sulfoxides yet Cys67 remained unmodified. Therefore, neutrophil-generated HOCl can oxidize cardiac Mb after AMI and this may impact on its function within the affected myocardium: oxidized Mb maybe a useful marker of myocardial inflammation.


Subject(s)
Hypochlorous Acid/chemistry , Myocardial Infarction/metabolism , Myocardium/metabolism , Myoglobin/chemistry , Neutrophils/metabolism , Oxygen/chemistry , Animals , Chromatography, Liquid , Disease Models, Animal , Heart/physiology , Heart Failure/metabolism , Heart Ventricles/pathology , Immunohistochemistry , Inflammation , Male , Rats , Rats, Wistar , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sulfoxides/chemistry , Tandem Mass Spectrometry
6.
PeerJ ; 4: e2081, 2016.
Article in English | MEDLINE | ID: mdl-27257556

ABSTRACT

Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

7.
Biochem Pharmacol ; 86(3): 419-27, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23732299

ABSTRACT

The multi-kinase inhibitor sorafenib is used for the treatment of renal and hepatic carcinomas and is undergoing evaluation for treatment of breast cancer in combination with other agents. Cytochrome P450 (CYP) 3A4 converts sorafenib to multiple metabolites that have been detected in patient plasma. However, recent clinical findings suggest that combination therapy may elicit inhibitory pharmacokinetic interactions involving sorafenib that increase toxicity. While sorafenib N-oxide is an active metabolite, information on the anti-tumor actions of other metabolites is unavailable. The present study evaluated the actions of sorafenib and its five major metabolites in human breast cancer cell lines. All agents, with the exception of N'-hydroxymethylsorafenib N-oxide, decreased ATP formation in four breast cancer cell lines (MDA-MB-231, MDA-MB-468, MCF-7 and T-47D). Prolonged treatment of MDA-MB-231 cells with N'-desmethylsorafenib, N'-desmethylsorafenib N-oxide and sorafenib (10 µM, 72 h) produced small increases in caspase-3 activity to 128-139% of control. Sorafenib and its metabolites, again with the exception of N'-hydroxymethylsorafenib N-oxide, impaired MEK/ERK signaling in MDA-MB-231 cells and modulated the expression of cyclin D1 and myeloid cell leukemia sequence-1, which regulate cell viability. When coadministered with doxorubicin (0.5 or 1 µM), sorafenib and N'-desmethylsorafenib (25 µM) produced greater effects on ATP production than either treatment alone. Thus, it emerges that, by targeting the MEK/ERK pathway, multiple sorafenib metabolites may contribute to the actions of sorafenib in breast cancer. Because N'-desmethylsorafenib is not extensively metabolized and does not inhibit major hepatic CYPs, this metabolite may have a lower propensity to precipitate pharmacokinetic drug interactions than sorafenib.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Cell Proliferation/drug effects , Niacinamide/analogs & derivatives , Phenylurea Compounds/therapeutic use , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , MCF-7 Cells , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Niacinamide/therapeutic use , Sorafenib
8.
J Biol Chem ; 288(3): 1548-67, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23209301

ABSTRACT

The heme enzyme indoleamine 2,3-dioxygenase (IDO) is a key regulator of immune responses through catalyzing l-tryptophan (l-Trp) oxidation. Here, we show that hydrogen peroxide (H(2)O(2)) activates the peroxidase function of IDO to induce protein oxidation and inhibit dioxygenase activity. Exposure of IDO-expressing cells or recombinant human IDO (rIDO) to H(2)O(2) inhibited dioxygenase activity in a manner abrogated by l-Trp. Dioxygenase inhibition correlated with IDO-catalyzed H(2)O(2) consumption, compound I-mediated formation of protein-centered radicals, altered protein secondary structure, and opening of the distal heme pocket to promote nonproductive substrate binding; these changes were inhibited by l-Trp, the heme ligand cyanide, or free radical scavengers. Protection by l-Trp coincided with its oxidation into oxindolylalanine and kynurenine and the formation of a compound II-type ferryl-oxo heme. Physiological peroxidase substrates, ascorbate or tyrosine, enhanced rIDO-mediated H(2)O(2) consumption and attenuated H(2)O(2)-induced protein oxidation and dioxygenase inhibition. In the presence of H(2)O(2), rIDO catalytically consumed nitric oxide (NO) and utilized nitrite to promote 3-nitrotyrosine formation on IDO. The promotion of H(2)O(2) consumption by peroxidase substrates, NO consumption, and IDO nitration was inhibited by l-Trp. This study identifies IDO as a heme peroxidase that, in the absence of substrates, self-inactivates dioxygenase activity via compound I-initiated protein oxidation. l-Trp protects against dioxygenase inactivation by reacting with compound I and retarding compound II reduction to suppress peroxidase turnover. Peroxidase-mediated dioxygenase inactivation, NO consumption, or protein nitration may modulate the biological actions of IDO expressed in inflammatory tissues where the levels of H(2)O(2) and NO are elevated and l-Trp is low.


Subject(s)
Heme/chemistry , Hydrogen Peroxide/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Peroxidases/chemistry , Biocatalysis , Circular Dichroism , Escherichia coli/genetics , Heme/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kinetics , Nitric Oxide/chemistry , Oxidation-Reduction , Peroxidases/metabolism , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solutions , Spectrum Analysis, Raman
9.
Free Radic Biol Med ; 52(9): 1918-28, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22343418

ABSTRACT

We investigated whether cosupplementation with synthetic tetra-tert-butyl bisphenol (BP) and vitamin C (Vit C) ameliorated oxidative stress and acute kidney injury (AKI) in an animal model of acute rhabdomyolysis (RM). Rats were divided into groups: Sham and Control (normal chow), and BP (receiving 0.12% w/w BP in the diet; 4 weeks) with or without Vit C (100mg/kg ascorbate in PBS ip at 72, 48, and 24h before RM induction). All animals (except the Sham) were treated with 50% v/v glycerol/PBS (6 mL/kg injected into the hind leg) to induce RM. After 24h, urine, plasma, kidneys, and aortae were harvested. Lipid oxidation (assessed as cholesteryl ester hydroperoxides and hydroxides and F(2)-isoprostanes accumulation) increased in the kidney and plasma and this was coupled with decreased aortic levels of cyclic guanylylmonophosphate (cGMP). In renal tissues, RM stimulated glutathione peroxidase (GPx)-4, superoxide dismutase (SOD)-1/2 and nuclear factor kappa-beta (NFκß) gene expression and promoted AKI as judged by formation of tubular casts, damaged epithelia, and increased urinary levels of total protein, kidney-injury molecule-1 (KIM-1), and clusterin. Supplementation with BP±Vit C inhibited the two indices of lipid oxidation, down-regulated GPx-4, SOD1/2, and NF-κß gene responses and restored aortic cGMP, yet renal dysfunction and altered kidney morphology persisted. By contrast, supplementation with Vit C alone inhibited oxidative stress and diminished cast formation and proteinuria, while other plasma and urinary markers of AKI remained elevated. These data indicate that lipid- and water-soluble antioxidants may differ in terms of their therapeutic impact on RM-induced renal dysfunction.


Subject(s)
Ascorbic Acid/administration & dosage , Blood Vessels/drug effects , Kidney Diseases/etiology , Lipids/chemistry , Oxidative Stress , Polyphenols/administration & dosage , Rhabdomyolysis/complications , Animals , Ascorbic Acid/pharmacology , Base Sequence , Biomarkers/metabolism , Blood Vessels/physiology , DNA Primers , Male , Models, Animal , Polyphenols/pharmacology , Rats , Rats, Wistar
10.
Clin Sci (Lond) ; 116(1): 53-60, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18507534

ABSTRACT

The role of oxidative damage in the aetiology of coronary disease remains controversial, as clinical trials investigating the effect of antioxidants have not generally been positive. In the present study, 227 coronary cases, identified from a cohort study, were matched, by age and gender, with 420 controls in a nested case-control design. Stored plasma samples were analysed for F2-isoprostanes by stable isotope dilution MS, and specifically oxidized forms of apoA-I (apolipoprotein A-I) by HPLC of HDL (high-density lipoprotein). Median values of F2-isoprostanes were higher in plasma samples that contained oxidized apoA-I compared with samples with undetectable oxidized apoA-I (1542 compared with 1165 pmol/l). F2-Isoprostanes were significantly correlated with variants of non-oxidized apoA-II (r=-0.15) and were associated with HDL-cholesterol (P<0.0001). F2-Isoprostanes in cases (median, 1146 pmol/l) were not different from controls (1250 pmol/l); the odds ratio (95% confidence interval) for a 1 S.D. increase in F2-isoprostanes was 1.08 (0.91-1.29). Similarly, there was no independent association between the presence of oxidized apoA-I, detected in approx. 20% of the samples, and coronary risk. In conclusion, we found no evidence of associations between markers of lipid (F2-isoprostanes) and protein (oxidized apoA-I) oxidation and the risk of fatal or non-fatal coronary heart disease in a general population. This may be due to a true lack of association or insufficient power.


Subject(s)
Blood Proteins/metabolism , Coronary Artery Disease/blood , Lipid Metabolism , Aged , Aged, 80 and over , Apolipoprotein A-I/blood , Apolipoprotein A-II/blood , Biomarkers/blood , Case-Control Studies , Chromatography, High Pressure Liquid/methods , Coronary Artery Disease/epidemiology , Coronary Artery Disease/etiology , F2-Isoprostanes/blood , Female , Humans , Lipoproteins, HDL/blood , Male , Middle Aged , New Zealand/epidemiology , Oxidation-Reduction , Oxidative Stress , Risk Factors
11.
J Lipid Res ; 50(3): 586-594, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18832772

ABSTRACT

Oxidized HDL has been proposed to play a key role in atherogenesis. A wide range of reactive intermediates oxidizes methionine residues to methionine sulfoxide (MetO) in apolipoprotein A-I (apoA-I), the major HDL protein. These reactive species include those produced by myeloperoxidase, an enzyme implicated in atherogenesis. The aim of the present study was to develop a sensitive and specific ELISA for detecting MetO residues in HDL. We therefore immunized mice with HPLC-purified human apoA-I containing MetO(86) and MetO(112) (termed apoA-I(+32)) to generate a monoclonal antibody termed MOA-I. An ELISA using MOA-I detected lipid-free apoA-I(+32), apoA-I modified by 2e-oxidants (hydrogen peroxide, hypochlorous acid, peroxynitrite), and HDL oxidized by 1e- or 2e-oxidants and present in buffer or human plasma. Detection was concentration dependent, reproducible, and exhibited a linear response over a physiologically plausible range of concentrations of oxidized HDL. In contrast, MOA-I failed to recognize native apoA-I, native apoA-II, apoA-I modified by hydroxyl radical or metal ions, or LDL and methionine-containing proteins other than apoA-I modified by 2e-oxidants. Because the ELISA we have developed specifically detects apoA-I containing MetO in HDL and plasma, it should provide a useful tool for investigating the relationship between oxidized HDL and coronary artery disease.


Subject(s)
Apolipoprotein A-I/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Lipoproteins, HDL/chemistry , Methionine/analogs & derivatives , Adult , Animals , Antibodies, Monoclonal , Apolipoprotein A-I/blood , Apolipoprotein A-I/genetics , Apolipoprotein A-I/immunology , Blood Chemical Analysis/methods , Blood Chemical Analysis/statistics & numerical data , Enzyme-Linked Immunosorbent Assay/statistics & numerical data , Humans , Lipoproteins, HDL/blood , Male , Methionine/analysis , Mice , Middle Aged , Mutagenesis, Site-Directed , Oxidation-Reduction , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sensitivity and Specificity
12.
Methods Mol Biol ; 477: 49-63, 2008.
Article in English | MEDLINE | ID: mdl-19082938

ABSTRACT

Atherosclerosis is associated with dysfunctional HDL, and oxidation of HDL is thought to give rise to HDL becoming dysfunctional. Lipoprotein oxidation represents a complex series of processes that can be assessed by various methods. In general, oxidation mediated by 1-electron or radical oxidants gives rise to lipid hydroperoxides (LOOHs) as the primary product. These LOOHs may then undergo further reactions giving rise to secondary lipid oxidation products and/or oxidation of lipoprotein-associated proteins. Thus, LOOHs specifically oxidize Met residues of apolipoprotein (apo) A-I and A-II (the major proteins of HDL) to MetO. Here we describe an HPLC-based method to detect oxidized HDL containing specifically oxidized forms of apoA-I and apoA-II. This method may be useful to assess the early stages of HDL oxidation in biological samples.


Subject(s)
Apolipoproteins/blood , Chemistry Techniques, Analytical/methods , Lipoproteins, HDL/blood , Amidines/pharmacology , Apolipoprotein A-I/blood , Apolipoprotein A-I/chemistry , Apolipoprotein A-II/blood , Apolipoprotein A-II/chemistry , Apolipoproteins/chemistry , Chromatography, High Pressure Liquid , Genotype , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/isolation & purification , Mass Spectrometry , Nitric Oxide Synthase Type III/genetics , Oxidation-Reduction/drug effects , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...