Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Article in English | MEDLINE | ID: mdl-38934278

ABSTRACT

BACKGROUND: The incidence of dyslipidemia increases after menopause. Electroacupuncture (EA) has been recommended for menopause-related disease. However, the positive effect on lipid metabolism disorders is still unclear. OBJECTIVES: To investigate the underlying mechanism of EA treatment on lipid metabolism disorders through ONT full-length transcriptome sequencing Methods: Adult female SD rats were randomly divided into Ctrl, sham operation+high-fat feed(Sham+HFD), Ovariectomized+high-fat feed (OVX+HFD), Ovariectomized+high-fat feed + Atorvastatin (OVX+HFD+ATO) and OVX+HFD+EA groups. Periovarian adipose tissue around the bilateral ovaries of rats in the Sham+HFD group was resected. Rats in the OVX+HFD, OVX+HFD+ATO and OVX+HFD+EA groups were subjected to bilateral oophorectomy to prepare the ovariectomized rat model. Treatment was applied to rats in the OVX+HFD+EA group. ST36, PC6, SP6, BL18 and ST40 were the selected acupoints. Daily food intake and body weights of rats were recorded. The samples were collected 30 days after treatment. The serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein (HDL-C) were detected to assess the improvement of lipid metabolism disorders. HE and oil red O staining were used to stain the liver tissues. Total RNA was extracted from liver tissues, and its transcriptional changes were determined by high-throughput sequencing. Additionally, RTÁqPCR and immunofluorescence staining were used to verify the crucial signal pathway screened by the ONT fullÁlength transcriptome sequencing. RESULTS: EA treatment resulted in a lowered weight of perirenal fat and liver and a significant improvement in the color of the liver. In addition, EA could improve the lipid profile and hepatic steatosis in OVX+HFD rats. According to fullÁlength transcriptome sequencing, 2292 genes showed differential expression in the OVX+HFD group; of these, 1121 were upregulated and 1171 down-regulated. 609 DEGs were found in the OVX+HFD+EA group compared to the OVX+HFD group; 235 up-regulated and 374 down-regulated. We also found that 77 genes are significantly upregulated after EA intervention through Venn map analysis (including Agtr1a, Pdia3, etc.), which may be the targeted genes for EA treatment of lipid metabolism disorders. Finally, we verified the expression of Pdia3, Perk and Qrich1 levels in liver tissues. HFD feeding could increase the expression of Pdia3 and its downstream signal pathways molecular Perk and Qrich1. But these effects were reversed by EA treatment, the results demonstrated that the expression of pdia3, Perk, as well as Qrich1 of OVX+HFD rats had a decreasing trend after EA treatment. CONCLUSIONS: EA could ameliorate lipid metabolic disorder in OVX+HFD rats. The Pdia3/Perk/Qrich1 signal pathway may play crucial roles in the improvement of lipid metabolism disorder of OVX+HFD rats after EA treatment.

2.
Phys Chem Chem Phys ; 26(21): 15181-15191, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752328

ABSTRACT

In this paper, we propose a new two-step strategy for computing ro-vibrational energy levels and wavefunctions of a triatomic molecule and apply it to CO2. A two-step method [J. Tennyson and B. T. Sutcliffe, Mol. Phys., 1986, 58, 1067] uses a basis whose functions are products of K-dependent "vibrational" functions and symmetric top functions. K is the quantum number for the molecule-fixed z component of the angular momentum. For a linear molecule, a two-step method is efficient because the Hamiltonian used to compute the basis functions includes the largest coupling term. The most important distinguishing feature of the two-step method we propose is that it uses an associated Legendre basis and quadrature rather than a K-dependent discrete variable representation. This reduces the cost of the calculation and simplifies the method. We have computed ro-vibrational energy levels with J up to 100 for CO2, on an accurate available potential energy surface which is known as the AMES-2 PES and present a subset of those levels. We have converged most levels up to 20 000 cm-1 to 0.0001 cm-1.

3.
Sheng Li Xue Bao ; 76(1): 59-76, 2024 Feb 25.
Article in Chinese | MEDLINE | ID: mdl-38444132

ABSTRACT

Intracerebral hemorrhage (ICH) is the most common subtype of stroke with high disability and high mortality rates. Due to the hypertension with arteriosclerosis, hemopathy and cerebrovascular amyloidosis, the influx of blood from ruptured vessels into the brain destroys the cerebral parenchyma and results in dysfunction of central nervous system because of hematoma compression and a series of toxic metabolites. The cerebral parenchyma consists of gray and white matter. The white matter consists of myelinated axons and oligodendrocytes, whereas the gray matter consists of neuronal cell bodies and dendrites. Currently, most of studies have explored the mechanisms of gray matter injury. But researches of white matter injury (WMI) are still in their infancy, which may be partially responsible for the failure of treatments with neuroprotectants targeting degenerating neuronal cells. In recent years, researchers have progressively identified pathophysiological mechanisms of WMI after ICH including mass effect, neuroinflammation and oxidative stress, but information on the molecular mechanisms of WMI and its effective treatment remains limited. In this paper, we will describe the structure and function of white matter, summarize pathology of WMI and focus on the research advances in the molecular mechanisms and therapeutic strategies of WMI after ICH.


Subject(s)
Stroke , White Matter , Humans , Cerebral Hemorrhage/therapy , Brain , Cerebral Cortex
4.
World J Clin Cases ; 12(4): 835-841, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38322693

ABSTRACT

BACKGROUND: Presently, there is no established standard anti-blood clot therapy for patients facing acute myocardial infarction (AMI) complicated by left ventricular thrombus (LVT). While vitamin K antagonists are the preferred choice for oral blood thinning, determining the best course of blood-thinning medication remains challenging. It is unclear if non-vitamin K antagonist oral blood thinners have different effectiveness in treating LVT. This study significantly contributes to the medical community. CASE SUMMARY: The blood-thinning treatment of a patient with AMI and LVT was analyzed. Triple blood-thinning therapy included daily enteric-coated aspirin tablets at 0.1 g, daily clopidogrel hydrogen sulfate at 75 mg, and dabigatran etexilate at 110 mg twice daily. After 15 d, the patient's LVT did not decrease but instead increased. Clinical pharmacists comprehensively analyzed the cases from the perspective of the patient's disease status and drug interaction. The drug regimen was reformulated for the patient, replacing dabigatran etexilate with warfarin, and was administered for six months. The clinical pharmacist provided the patient with professional and standardized pharmaceutical services. The patient's condition was discharged after meeting the international normalized ratio value (2-3) criteria. The patient fully complied with the follow-up, and the time in the therapeutic range was 78.57%, with no serious adverse effects during pharmaceutical monitoring. CONCLUSION: Warfarin proves to be an effective drug for patients with AMI complicated by LVT, and its blood-thinning course lasts for six months.

5.
Sci Adv ; 10(8): eadj8632, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394212

ABSTRACT

Measurements of rovibrational spectra of clusters provide physical insight only if spectral lines can be assigned to pairs of quantum states, and further insight is obtained if one can deduce the quantitative energy-level pattern. Both steps can be so difficult that some measured spectra remain unassigned, one example is orthoH2-CO. To extend the scope of spectroscopic insights, we propose to use theoretical information in interpretation of spectra. We first performed high accuracy, full-dimensional calculations of the orthoH2-CO spectrum, at the highest practically achievable levels of electronic structure theory and quantum nuclear dynamics. Then, an iterative, theory-guided method developed here allowed us to fully interpret the spectrum of orthoH2-CO, extending the range of van der Waals clusters for which spectroscopy can provide physical insights.

6.
Bone Res ; 11(1): 56, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884520

ABSTRACT

Despite the diverse roles of tripartite motif (Trim)-containing proteins in the regulation of autophagy, the innate immune response, and cell differentiation, their roles in skeletal diseases are largely unknown. We recently demonstrated that Trim21 plays a crucial role in regulating osteoblast (OB) differentiation in osteosarcoma. However, how Trim21 contributes to skeletal degenerative disorders, including osteoporosis, remains unknown. First, human and mouse bone specimens were evaluated, and the results showed that Trim21 expression was significantly elevated in bone tissues obtained from osteoporosis patients. Next, we found that global knockout of the Trim21 gene (KO, Trim21-/-) resulted in higher bone mass compared to that of the control littermates. We further demonstrated that loss of Trim21 promoted bone formation by enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and elevating the activity of OBs; moreover, Trim21 depletion suppressed osteoclast (OC) formation of RAW264.7 cells. In addition, the differentiation of OCs from bone marrow-derived macrophages (BMMs) isolated from Trim21-/- and Ctsk-cre; Trim21f/f mice was largely compromised compared to that of the littermate control mice. Mechanistically, YAP1/ß-catenin signaling was identified and demonstrated to be required for the Trim21-mediated osteogenic differentiation of BMSCs. More importantly, the loss of Trim21 prevented ovariectomy (OVX)- and lipopolysaccharide (LPS)-induced bone loss in vivo by orchestrating the coupling of OBs and OCs through YAP1 signaling. Our current study demonstrated that Trim21 is crucial for regulating OB-mediated bone formation and OC-mediated bone resorption, thereby providing a basis for exploring Trim21 as a novel dual-targeting approach for treating osteoporosis and pathological bone loss.


Subject(s)
Osteogenesis , Osteoporosis , Animals , Female , Humans , Mice , beta Catenin/genetics , Bone and Bones/metabolism , Cell Differentiation/genetics , Osteogenesis/genetics , Osteoporosis/genetics
7.
J Chem Phys ; 158(8): 084107, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36859104

ABSTRACT

Due to the ubiquity and importance of water, water dimer has been intensively studied. Computing the (ro-)vibrational spectrum of water dimer is challenging. The potential has eight wells separated by low barriers, which makes harmonic approximations of limited utility. A variational approach is imperative, but difficult because there are 12 coupled vibrational coordinates. In this paper, we use a product contracted basis whose functions are products of intramolecular and intermolecular functions computed using an iterative eigensolver. An intermediate matrix F facilitates calculating matrix elements. Using F, it is possible to do calculations on a general potential without storing the potential on the full quadrature grid. We find that surprisingly many intermolecular functions are required. This is due to the importance of coupling between inter- and intra-molecular coordinates. The full G16 symmetry of water dimer is exploited. We calculate, for the first time, monomer excited stretch states and compare P(1) transition frequencies with their experimental counterparts. We also compare with experimental vibrational shifts and tunneling splittings. Surprisingly, we find that the largest tunneling splitting, which does not involve the interchange of the two monomers, is smaller in the asymmetric stretch excited state than in the ground state. Differences between levels we compute and those obtained with a [6+6]D adiabatic approximation [Leforestier et al. J. Chem. Phys. 137 014305 (2012)] are ∼0.6 cm-1 for states without monomer excitation, ∼4 cm-1 for monomer excited bend states, and as large as ∼10 cm-1 for monomer excited stretch states.

8.
Front Genet ; 13: 956632, 2022.
Article in English | MEDLINE | ID: mdl-36186425

ABSTRACT

Guanylate binding protein 2 (GBP2) is a member of the guanine binding protein family, and its relationship with prognostic outcomes and tumor immune microenvironments in glioma remains elusive. We found GBP2 were increased in glioma tissues at both mRNA and protein levels. Kaplan-Meier curves revealed that high GBP2 expression was linked with worse survival of glioma patients, and multivariate Cox regression analysis indicated that high GBP2 expression was an independent prognostic factor for glioma. Combined analysis in immune database revealed that the expression of GBP2 was significantly related to the level of immune infiltration and immunomodulators. Single-cell analysis illustrated the high expression of GBP2 in malignant glioma cells showed the high antigen presentation capability, which were confirmed by real-time polymerase chain reaction (qRT-PCR) data. Additionally, the hsa-mir-26b-5p and hsa-mir-335-5p were predicted as GBP2 regulators and were validated in U87 and U251 cells. Our results first decipher immune-related characteristics and noncoding regulators of GBP2 in glioma, which may provide insights into associated immunotherapies and prognostic predictor.

9.
Int J Ophthalmol ; 15(6): 924-931, 2022.
Article in English | MEDLINE | ID: mdl-35814895

ABSTRACT

AIM: To investigate the binocular intraocular lens (IOL) power difference in eyes with short, normal, and long axial lengths (AL) using Lenstar LS 900 optical biometry. METHODS: A total of 716 (1432 eyes) participants were included. The groups were categorized into short (group A: AL<22 mm), normal (group B: 22 mm≤AL≤25 mm), and long AL groups (group C: AL>25 mm). The central corneal thickness (CCT), anterior chamber depth (ACD), lens thickness (LT), AL, anterior corneal keratometry, white-to-white (WTW), pupil diameter (PD), as well as IOL power calculated using embedded Barrett formula were assessed. Bland-Altman plots were used to test the agreement of the binocular parameters. RESULTS: In group A, the CCT of the right eye was significantly thinner than that of the left eye (P=0.044) with a difference of -2±8 µm [95% limits of agreement (LoA), -17.8 to 13.2 µm]. For group B, the PD and IOL power in the right eye were significantly lower than those of the left eye (P=0.001, <0.001) with a difference of -0.05±0.32 mm (95%LoA, -0.68 to 0.58 mm) and -0.18±1.01 D (95%LoA, -2.2 to 1.8 D). The AL of right eye was longer than that of the left eye (P=0.002) with a difference of 0.04±0.25 mm (95%LoA, -0.45 to 0.52 mm). No significant difference was observed for all the binocular parameters in group C. The percentage of participants with binocular IOL power difference within ±0.5 D were 62% (31/50), 68.3% (339/496), and 38.8% (66/170) in groups A, B, and C, respectively. CONCLUSION: The binocular parameters related to IOL power are in good agreement, but the binocular IOL power difference of more than half of participants with long AL is more than 0.50 D.

10.
Mol Med Rep ; 25(3)2022 03.
Article in English | MEDLINE | ID: mdl-35059733

ABSTRACT

Glioblastoma is a common central nervous system tumor and despite considerable advancements in treatment patient prognosis remains poor. Angiogenesis is a significant prognostic factor in glioblastoma, anti­angiogenic treatments represent a promising therapeutic approach. Vascular endothelial growth factor A (VEGFA) is a predominant regulator of angiogenesis and mounting evidence suggests that the Wnt signaling pathway serves a significant role in tumor angiogenesis. As a positive regulator of the Wnt/ß­catenin signaling pathway, frequently rearranged in advanced T­cell lymphomas­1 (FRAT1) is highly expressed in human glioblastoma and is significantly associated with glioblastoma growth, invasion and migration, as well as poor patient prognosis. Bioinformatics analysis demonstrated that both VEGFA and FRAT1 were highly expressed in most tumor tissues and associated with prognosis. However, whether and how FRAT1 is involved in angiogenesis remains to be elucidated. In the present study, the relationship between FRAT1 and VEGFA in angiogenesis was investigated using the human glioblastoma U251 cell line. Small interfering RNAs (siRNAs) were used to silence FRAT1 expression in U251 cells, and the mRNA and protein expression levels of VEGFA, as well as the concentration of VEGFA in U251 cell supernatants, were determined using reverse transcription­quantitative PCR, western blotting and ELISA. A tube formation assay was conducted to assess angiogenesis. The results demonstrated that siRNA knockdown significantly decreased the protein expression levels of FRAT1 in U251 cells and markedly decreased the mRNA and protein expression levels of VEGFA. Furthermore, the concentration of VEGFA in the cell supernatant was significantly reduced and angiogenesis was suppressed. These results suggested that FRAT1 may promote VEGFA secretion and angiogenesis in human glioblastoma cells via the Wnt/ß­catenin signaling pathway, supporting the potential use of FRAT1 as a promising therapeutic target in human glioblastoma.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Brain Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Neovascularization, Pathologic/genetics , Proto-Oncogene Proteins/genetics , Vascular Endothelial Growth Factor A/genetics , Adaptor Proteins, Signal Transducing/metabolism , Blotting, Western , Brain Neoplasms/blood supply , Brain Neoplasms/metabolism , Cell Line, Tumor , Cells, Cultured , Female , Glioblastoma/blood supply , Glioblastoma/metabolism , Humans , Male , Middle Aged , Neovascularization, Pathologic/metabolism , Prognosis , Proto-Oncogene Proteins/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/genetics , beta Catenin/metabolism
11.
Transl Vis Sci Technol ; 10(9): 13, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34388238

ABSTRACT

Purpose: To investigate crystalline lens tilt and decentration with respect to the corneal vertex (CV) using swept-source optical coherence tomography (SS-OCT) combined with three-dimensional (3D) reconstruction. Methods: Thirty consecutive patients with cataract (30 right eyes) were included in this prospective, observational, pilot case series study. SS-OCT anterior segment images and 3D reconstructions were used for data analysis. Results: The mean distance between the central points of crystalline lens plane and limbus plane was approximately 0.33 ± 0.18 mm. The distance of the center of the limbus plane relative to the CV was approximately 0.31 ± 0.14 mm, which approximated the distance of the center of the crystalline lens plane relative to the CV at 0.33 ± 0.20 mm (P = 0.354). However, the centers of the limbus and crystalline planes were not in the same quadrant in 80% of eyes (24/30). Moreover, the crystalline lens tilted by approximately 4.16° ± 1.97° relative to the CV. Conclusions: The center of the limbus plane was not consistent with that of the crystalline lens plane. The tilt and decentration of the crystalline lens were natural phenomena. Translational Relevance: The SS-OCT technology combined with 3D reconstruction was useful for quantifying the tilt and decentration of the crystalline lens. The definition of angle alpha used for premium IOL screening should be updated.


Subject(s)
Lens, Crystalline , Lenses, Intraocular , Humans , Imaging, Three-Dimensional , Lens, Crystalline/diagnostic imaging , Prospective Studies , Tomography, Optical Coherence
12.
J Chem Phys ; 154(12): 124112, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33810654

ABSTRACT

By doing calculations on the methane-water van der Waals complex, we demonstrate that highly converged energy levels and wavefunctions can be obtained using Wigner D basis functions and the Symmetry-Adapted Lanczos (SAL) method. The Wigner D basis is a nondirect product basis and, therefore, efficient when the kinetic energy operator has accessible singularities. The SAL method makes it possible to exploit symmetry to label energy levels and reduce the cost of the calculation, without explicitly using symmetry-adapted basis functions. Line strengths are computed, and new bands are identified. In particular, we find unusually strong transitions between states associated with the isomers of the global minimum and the secondary minimum.

13.
Phys Chem Chem Phys ; 22(39): 22674-22683, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33016299

ABSTRACT

The CO2-N2 complex is formed from two key components of Earth's atmosphere, and as such, has received some attention from both experimental and theoretical studies. On the theory side, a potential energy surface (PES) based on high level ab initio data was reported [Nasri et al., J. Chem. Phys., 2015, 142, 174301] and then used in more recently reported rovibrational calculations [Lara-Moreno et al., Phys. Chem. Chem. Phys., 2019, 21, 3550]. Accuracy of about 1 percent was achieved for calculated rotational transitions of the ground vibrational state of the complex, compared with previously reported microwave spectra. However, a very recent measurement of the geared bending mode frequency [Barclay et al., J. Chem. Phys., 2020, 153, 014303] recorded a value of 21.4 cm-1, which is wildly different from the corresponding calculated value of 45.9 cm-1. To provide some insight into this discrepancy, we have constructed a new more accurate PES, and used it to perform highly converged variational rovibrational calculations. Our new results yield a value of 21.1 cm-1 for that bending frequency, in close agreement with the experiment. We also obtain significantly improved predicted rotational transitions. Finally, we note that a very shallow well, previously reported as a distinct second isomer, is not found on our new PES, but rather a transition structure is seen in that location.

14.
Angew Chem Int Ed Engl ; 59(41): 18078-18086, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32648640

ABSTRACT

Multi-component MOFs contain multiple sets of unique and hierarchical pores, with different functions for different applications, distributed in their inter-linked domains. Herein, we report the construction of a class of precisely aligned flexible-on-rigid hybrid-phase MOFs with a unique rods-on-octahedron morphology. We demonstrated that hybrid-phase MOFs can be constructed based on two prerequisites: the partially matched topology at the interface of the two frameworks, and the structural flexibility of MOFs with acs topology, which can compensate for the differences in lattice parameters. Furthermore, we achieved domain selective loading of multiple guest molecules into the hybrid-phase MOF, as observed by scanning transmission electron microscopy-energy-dispersive X-ray spectrometry elemental mapping. Most importantly, we successfully applied the constructed hybrid-phase MOF to develop a dual-drug delivery system with controllable loading ratio and release kinetics.


Subject(s)
Drug Delivery Systems , Metal-Organic Frameworks/chemistry , Crystallization , Humans , MCF-7 Cells , Microscopy, Electron, Scanning Transmission , Molecular Structure , Powder Diffraction , Spectrometry, X-Ray Emission
15.
J Chem Phys ; 152(20): 204311, 2020 May 29.
Article in English | MEDLINE | ID: mdl-32486683

ABSTRACT

We report the vibrational energy levels of vinyl radical (VR) that are computed with a Lanczos eigensolver and a contracted basis. Many of the levels of the two previous VR variational calculations differ significantly and differ also from those reported in this paper. We identify the source of and correct symmetry errors on the potential energy surfaces used in the previous calculations. VR has two equivalent equilibrium structures. By plotting wavefunction cuts, we show that two tunneling paths play an important role. Using the computed wavefunctions, it is possible to assign many states and thereby to determine tunneling splittings that are compared with their experimental counterparts. Our computed red shift of the hot band at 2897.23 cm-1, observed by Dong et al. [J Chem. Phys. 128, 044305 (2008)], is 4.47 cm-1, which is close to the experimental value of 4.63 cm-1.

16.
J Cell Physiol ; 235(11): 8667-8678, 2020 11.
Article in English | MEDLINE | ID: mdl-32324257

ABSTRACT

DNA methylation, which can affect the expression level of genes, is one of the most vital epigenetic modifications in mammals. Fibroblast growth factor receptor 1 (FGFR1) plays an important role in muscle development; however, DNA methylation of the FGFR1 promoter has not been studied to date in cattle. Our study focused on methylation of the FGFR1 promoter and its effect on bovine myoblast proliferation and differentiation. We identified the FGFR1 core promoter by using luciferase reporter assays; we then studied FGFR1 expression by reverse transcription quantitative polymerase chain reaction, and the methylation pattern in the FGFR1 core promoter by bisulfite sequencing polymerase chain reaction in bovine muscle tissue at three different developmental stages. We used RNAi strategy to investigate the function of FGFR1 in myoblast proliferation and differentiation. Results showed that the FGFR1 core promoters were located at the R2 (-509 to ~-202 bp) and R4 (-1295 to ~-794 bp) regions upstream of the FGFR1 gene. FGFR1 expression level was negatively associated with the degree of methylation of the FGFR1 core promoter during the developmental process. In addition, we found that FGFR1 can promote myoblast proliferation, but had no effect on myoblast differentiation. In conclusion, our results suggest that FGFR1 can promote myoblast proliferation and its transcription can be regulated by the methylation level of the core promoter. Our findings provide a mechanistic basis for the improvement of animal breeding.


Subject(s)
Cell Proliferation/physiology , Gene Expression Regulation, Developmental/genetics , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Binding Sites/genetics , Cell Differentiation/genetics , DNA Methylation/physiology , Humans , Muscle, Skeletal/metabolism , Myoblasts/metabolism
17.
Life Sci ; 247: 117438, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32070708

ABSTRACT

AIMS: This study intends to investigate the mechanisms of ubiqutin-specific protease 22 (USP22)/B cell-specific Moloney murine leukemia virus integration site 1 (BMI1) on the biological phenotypes of glioma stem cells (GSCs) under hypoxia. MAIN METHODS: Western blot, Cell Counting Kit-8, colony formation and flow cytometry assays were preformed to evaluate cells biological behaviors. Luciferase assay was utilized to identify the associations among USP22, HIF-1α and BMI1. KEY FINDINGS: Silencing USP22 reduced the stemness and proliferation of GSCs, and increased its apoptosis in response to hypoxia. Whilst, overexpression of BMI1 reversed these phenomena. Whilst, a significant decrease in proliferation and stemness of GSCs caused by HIF-1α exhaustion were inversed by overexpression of USP22 or BMI1. SIGNIFICANCE: Function of USP22-BMI1 on biological behaviors of GSCs was regulated by HIF-1α in response to hypoxia.


Subject(s)
Glioma/therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/metabolism , Polycomb Repressive Complex 1/metabolism , Ubiquitin Thiolesterase/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 1/genetics , Signal Transduction , Tumor Hypoxia , Ubiquitin Thiolesterase/genetics
18.
J Phys Chem A ; 123(47): 10281-10289, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31657568

ABSTRACT

In this paper, we present rovibrational energy levels of CH2D+ and CHD2+. They are computed with a large basis and the Lanczos algorithm. CH2D+ and CHD2+ are believed to play an important role in interstellar space, but so far, there are no definitive observations. The predictions of this paper should facilitate detection. For CH2D+, two CH stretch bands have been studied at high resolution. Compared to our calculated energies, the root-mean-square error is 0.08 cm-1. For CHD2+, one CH stretch band has been studied at high resolution. Compared to our calculated energies, the root-mean-square error is 0.5 cm-1. Errors are larger, for both isotopologues, for bend states. We attribute these errors to the potential energy surface. Wave function and probability distribution plots are used to make assignments. The ν1 band of CHD2+ is significantly perturbed, and according to our calculations, the 3ν3 state is closest and might be the most important perturber.

19.
Article in English | MEDLINE | ID: mdl-31551937

ABSTRACT

Accumulating evidence suggests a role of bisphenol A (BPA) in non-alcoholic fatty liver disease (NAFLD), and its mechanism may be related to the up-regulation of lipogenic genes, but the mechanism of BPA induced lipogenic gene expression remains unknown. The aim of this study was to investigate the effects of perinatal exposure to BPA on NAFLD and its mechanisms. Pregnant Sprague-Dawley rats had access to drinking water containing 1 or 10 µg/ml BPA from gestational day 6 to post-natal day 21. For 5 weeks after weaning, offspring drank normal water without BPA. Body weight, lipid profile and the expression of genes or proteins involved in mTOR mediated lipid metabolism and autophagy, as well as inflammatory response were investigated in the 8-wk-old offspring of different genders. The results showed that body weight was increased only in females, however, males, and females from dams treated with BPA had significantly excess visceral adipose tissue, which was consistent with adipocyte hypertrophy. Elevated TG levels and up-regulation of lipogenic genes or proteins in liver, such as sterol regulatory element binding protein 1 (SREBP1), acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FAS) were consistent with increased liver lipid droplets in offspring exposed to BPA. Compared with controls, the protein levels of InsR, p-IRS-1, IRS-1, TSC1, and TSC2 were decreased, p-PI3K, p-Akt (S473), p-Akt (T308), p-mTOR, and mTOR were increased, and the impaired autophagic degradation was evidenced by increased protein levels of p62, although the levels of p-ULK1, Beclin1, and LC3B proteins were increased in liver of BPA-exposed offspring. The levels of TLR4 and NF-κB proteins were also significantly increased, and ERα protein was significantly decreased in BPA-exposed offspring. Our findings indicate that perinatal exposure to BPA causes the development of NAFLD in both female and male offspring, which is associated with up-regulation of lipogenic genes, dysregulated autophagy and activated inflammatory response involving the PI3K/Akt/mTOR and TLR4/NF-κB pathways.

20.
Org Lett ; 21(18): 7587-7591, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31479277

ABSTRACT

We report the first catalytic, enantioselective reductive bis-functionalization of common amides, which provides a facile access to a variety of 2,2-disubstituted 3-iminoindolines in good yields and with excellent enantioselectivities. The reaction conditions are quite mild and can be run on a gram scale. In this one-pot reaction, three C-C bonds, one ring, and one nitrogen-containing tetrasubstituted carbon stereocenter are created in a catalytic enantioselective manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...