Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Molecules ; 29(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542926

ABSTRACT

Molecular imprinting technology is widely used for the specific identification of compounds, but the selective recognition mechanisms of the same compounds still need to be further studied. Based on differences in hydrogen bond size and orientation, molecularly imprinted polymers (MIPs) were designed to adsorb flavonols with the same parent core and different hydroxyl groups. A surface-imprinted material was designed with silicon dioxide as the carrier, myricetin as the template molecule, and methacrylic acid (MAA) as the functional monomer. Scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area (BET) analyses, Fourier-transform infrared spectroscopy (FT-IR), and other characterization experiments were carried out. The intrinsic mechanism of the MIPs was also explored. The MIPs showed good adsorption of myricetin and other flavonoids through hydrogen bonding and steric hindrance. The adsorption capacity was 3.12-9.04 mg/g, and the imprinting factor was 1.78-3.37. Flavonoids with different hydroxyl groups in different numbers and directions had different hydrogen bond strengths with functional monomers. R2, R4, and R1 on 2-phenylchromogenone had stronger electronegativity, and the hydroxyl group was also more likely to form and have stronger hydrogen bonds. The hydroxyl negativity and the degree of steric hindrance of flavonoids played a major role in the recognition of molecularly imprinted materials. This study is of great significance for the synthesis of and selection of templates for analogous molecular imprinting materials.

2.
Adv Mater ; 36(23): e2309952, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38389497

ABSTRACT

Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.


Subject(s)
Hydrogels , Wearable Electronic Devices , Hydrogels/chemistry , Humans , Biocompatible Materials/chemistry , Printing, Three-Dimensional , Prostheses and Implants , Polymers/chemistry , Animals , Mechanical Phenomena , Robotics
3.
Cardiovasc Diabetol ; 22(1): 219, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620823

ABSTRACT

BACKGROUND: Clinical observations suggest a complex relationship between obesity and coronary artery disease (CAD). This study aimed to characterize the intermediate metabolism phenotypes among obese patients with CAD and without CAD. METHODS: Sixty-two participants who consecutively underwent coronary angiography were enrolled in the discovery cohort. Transcriptional and untargeted metabolomics analyses were carried out to screen for key molecular changes between obese patients with CAD (CAD obese), without CAD (Non-CAD obese), and Non-CAD leans. A targeted GC-MS metabolomics approach was used to further identify differentially expressed metabolites in the validation cohorts. Regression and receiver operator curve analysis were performed to validate the risk model. RESULTS: We found common aberrantly expressed pathways both at the transcriptional and metabolomics levels. These pathways included cysteine and methionine metabolism and arginine and proline metabolism. Untargeted metabolomics revealed that S-adenosylhomocysteine (SAH), 3-hydroxybenzoic acid, 2-hydroxyhippuric acid, nicotinuric acid, and 2-arachidonoyl glycerol were significantly elevated in the CAD obese group compared to the other two groups. In the validation study, targeted cysteine and methionine metabolomics analyses showed that homocysteine (Hcy), SAH, and choline were significantly increased in the CAD obese group compared with the Non-CAD obese group, while betaine, 5-methylpropanedioic acid, S-adenosylmethionine, 4-PA, and vitamin B2 (VB2) showed no significant differences. Multivariate analyses showed that Hcy was an independent predictor of obesity with CAD (hazard ratio 1.7; 95%CI 1.2-2.6). The area under the curve based on the Hcy metabolomic (HCY-Mtb) index was 0.819, and up to 0.877 for the HCY-Mtb.index plus clinical variables. CONCLUSION: This is the first study to propose that obesity with hyperhomocysteinemia is a useful intermediate metabolism phenotype that could be used to identify obese patients at high risk for developing CAD.


Subject(s)
Coronary Artery Disease , Hyperhomocysteinemia , Obesity , Humans , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/etiology , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Cross-Sectional Studies , Cysteine , East Asian People , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/genetics , Hyperhomocysteinemia/metabolism , Metabolomics , Obesity/complications , Obesity/genetics , Obesity/metabolism , Prospective Studies , Risk Factors , Transcriptome , Coronary Angiography , Cardiometabolic Risk Factors , Adult , Middle Aged , Aged
4.
Nat Commun ; 14(1): 426, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36702841

ABSTRACT

Pyroelectricity originates from spontaneous polarization variation, promising in omnipresent non-static thermodynamic energy harvesting. Particularly, changing spontaneous polarization via out-of-plane uniform heat perturbations has been shown in solar pyroelectrics. However, these approaches present unequivocal inefficiency due to spatially coupled low temperature change and duration along the longitudinal direction. Here we demonstrate unconventional giant polarization ripples in transverse pyroelectrics, without increasing the total energy input, into electricity with an efficiency of 5-fold of conventional longitudinal counterparts. The non-uniform graded temperature variation arises from decoupled heat localization and propagation, leading to anomalous in-plane heat perturbation (29-fold) and enhanced thermal disequilibrium effects. This in turn triggers an augmented polarization ripple, fundamentally enabling unprecedented electricity generation performance. Notably, the device generates a power density of 38 mW m-2 at 1 sun illumination, which is competitive with solar thermoelectrics and ferrophotovoltaics. Our findings provide a viable paradigm, not only for universal practical pyroelectric heat harvesting but for flexible manipulation of transverse heat transfer towards sustainable energy harvesting and management.

5.
ACS Nano ; 16(11): 18608-18620, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36318185

ABSTRACT

On-skin patches that record biopotential and biomechanical signals are essential for wearable healthcare monitoring, clinical treatment, and human-machine interaction. To acquire wearing comfort and high-quality signals, patches with tissue-like softness, elastic recovery, damage tolerance, and robust bioelectronic interface are highly desired yet challenging to achieve. Here, we report a dry epidermal patch made from a supramolecular polymer (SESA) and an in situ transferred carbon nanotubes' percolation network. The polymer possesses a hybrid structure of copolymerized permanent scaffold permeated by multiple dynamic interactions, which imparts a desired mechanical response transition from elastic recoil to energy dissipation with increased elongation. Such SESA-based patches are soft (Young's modulus ∼0.1 MPa) and elastic within physiologically relevant strain levels (97% elastic recovery at 50% tensile strain), intrinsically mechanical-electrical damage-resilient (∼90% restoration from damage after 5 min), and interference-immune in dynamic signal acquisition (stretch, underwater, sweat). We demonstrate its versatile physiological sensing applications, including electrocardiogram recording under various disturbances, machine-learning-enabled hand-gesture recognition through electromyogram measurement, subtle radial artery pulse, and drastic knee kinematics sensing. This epidermal patch offers a promising noninvasive, long-duration, and ambulant bioelectronic interfacing with anti-interference robustness.


Subject(s)
Nanotubes, Carbon , Humans , Nanotubes, Carbon/chemistry , Skin , Sweat , Elastic Modulus , Polymers/chemistry
6.
Comput Math Methods Med ; 2022: 4671419, 2022.
Article in English | MEDLINE | ID: mdl-36118836

ABSTRACT

Background: The efficacy of endurance training (ET) on patients with chronic obstructive pulmonary disease (COPD) has been controversial. This study was aimed at meta-analyzing the effect of ET in COPD patients undergoing pulmonary rehabilitation. Methods: The literature retrieval was performed in databases to screen relevant literature. Inclusion criteria were as follows: (1) subjects-COPD patients; (2) inclusion of interventional and control groups; (3) intervention measures-the interventional group received whole-body ET and other lung rehabilitation training, while the control group did not receive intervention or other lung rehabilitation training; (4) outcome indicators which included at least one of the following-6MWD, modified Medical Research Council questionnaire (mMRC), and COPD Assessment Test (CAT); and (5) study type-randomized controlled trials (RCTs). The Cochrane risk-of-bias tool was used to assess the risk of bias. The chi-square test was used to evaluate the magnitude of heterogeneity. Subgroup analysis was used to explore the source of heterogeneity. A funnel plot and Egger's test were used to evaluate publication bias. Results: The 6MWD in the ET group was significantly higher than that in the control group (MD = 47.20, 95% CI [28.60, 65.79], P < 0.00001). Significant heterogeneity (P < 0.00001, I 2 = 76%) without publication bias (P > 0.05) was noted. Subgroup analysis showed that the 6MWD of the ET group was significantly larger than that of the control group without heterogeneity (P = 0.63, I 2 = 0%; P = 0.59, I 2 = 0%) in both the no training subgroup (MD = 79.26, 95% CI [72.69, 85.82], P < 0.00001) and other rehabilitation training group (MD = 23.64, 95% CI [6.70, 40.57], P = 0.006). The mMRC score (MD = -0.72, 95% CI [-1.09, -0.34], P = 0.002) and CAT (MD = -6.07, 95% CI [-7.28, -4.87], P < 0.00001) of the ET group were significantly lower than those of the control group. There was no heterogeneity (P = 0.32, I 2 = 15%; P = 0.16, I 2 = 41%). Conclusion: ET can improve patients' motor function and reduce dyspnea. ET might be incorporated as an important part of lung rehabilitation training.


Subject(s)
Endurance Training , Pulmonary Disease, Chronic Obstructive , Humans
7.
Nat Commun ; 13(1): 3369, 2022 06 11.
Article in English | MEDLINE | ID: mdl-35690594

ABSTRACT

Mechanical properties of hydrogels are crucial to emerging devices and machines for wearables, robotics and energy harvesters. Various polymer network architectures and interactions have been explored for achieving specific mechanical characteristics, however, extreme mechanical property tuning of single-composition hydrogel material and deployment in integrated devices remain challenging. Here, we introduce a macromolecule conformational shaping strategy that enables mechanical programming of polymorphic hydrogel fiber based devices. Conformation of the single-composition polyelectrolyte macromolecule is controlled to evolve from coiling to extending states via a pH-dependent antisolvent phase separation process. The resulting structured hydrogel microfibers reveal extreme mechanical integrity, including modulus spanning four orders of magnitude, brittleness to ultrastretchability, and plasticity to anelasticity and elasticity. Our approach yields hydrogel microfibers of varied macromolecule conformations that can be built-in layered formats, enabling the translation of extraordinary, realistic hydrogel electronic applications, i.e., large strain (1000%) and ultrafast responsive (~30 ms) fiber sensors in a robotic bird, large deformations (6000%) and antifreezing helical electronic conductors, and large strain (700%) capable Janus springs energy harvesters in wearables.


Subject(s)
Hydrogels , Polymers , Elasticity , Polyelectrolytes
8.
Environ Toxicol ; 37(10): 2354-2365, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35716027

ABSTRACT

Imidacloprid (IMI) is a kind of widely used neonicotinoid insecticide. However, the toxicity of IMI is not only applied to target pests but also causes serious negative effects on birds and other creatures. Our previous studies have shown that long-term exposure to IMI can induce liver fibrosis in quails. However, the specific mechanism of quail liver fibrosis induced by IMI is not completely clear. Accordingly, the purpose of this study is to further clarify the potential molecular mechanism of IMI-induced liver fibrosis in quails. Japanese quails (Coturnix japonica) were treated with/without IMI (intragastric administration with 6 mg/kg body weight) in the presence/absence of luteolin (Lut) (fed with 800 mg/kg) for 90 days. The results reveal that IMI can induce hepatic fibrosis, oxidative stress, fatty degeneration, inflammation, and the down-expression of nuclear factor-E2-related factor-2 (Nrf2). Furthermore, the treatment of Lut, a kind of Nrf2 activator, increased the expression of Nrf2 in livers and alleviated liver fibrosis in quails. Altogether, our study demonstrates that inhibition of the Nrf2 pathway is the key to liver fibrosis induced by IMI in quails. These results provide a new understanding for the study of the toxicity of IMI and a practical basis for the treatment of liver fibrosis caused by IMI.


Subject(s)
Coturnix , NF-E2-Related Factor 2 , Animals , Coturnix/metabolism , Liver , Liver Cirrhosis/metabolism , NF-E2-Related Factor 2/metabolism , Neonicotinoids/toxicity , Nitro Compounds , Oxidative Stress , Quail/metabolism , Signal Transduction
9.
Environ Sci Pollut Res Int ; 29(46): 70464-70478, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35589886

ABSTRACT

Growing international trade requires more flexible warehouse management to match it. In order to achieve more effective warehouse management efficiency, a shelf status-detection method based on deep learning is proposed. Firstly, the image acquisition of a multi-level shelf containing multiple bays is performed under different time and lighting conditions. Due to the difference in image characteristics between the bottom shelf on the ground and the upper shelf on the non-ground level, the collected images were divided into two groups: floor images and shelf images; and the warehouse status recognition was performed on the two groups separately. The two sets of images are cropped and center projection transformed separately to obtain the region of interest. On this basis, the improved residual network model is used to construct different depot detection models for the two sets of images, respectively, and the above algorithm is verified by actual measurements. In this paper, 102,614 images of 3246 depots with different states of non-ground layer, and 27,903 images of ground layer are collected. They are divided into training set and test set according to the ratio of 4:1, and the accuracy of training set is 99.6%, and the accuracy of test set is 99.3%. The experimental outcomes provide a theoretical method and technical support for the intelligent warehouse system management.


Subject(s)
Deep Learning , Algorithms , Commerce , Internationality , Neural Networks, Computer
10.
Environ Toxicol ; 37(8): 2033-2043, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35446475

ABSTRACT

Deltamethrin (DLM) is a widely used and highly effective insecticide. DLM exposure is harmful to animal and human. Quail, as a bird model, has been widely used in the field of toxicology. However, there is little information available in the literature about quail cerebrum damage caused by DLM. Here, we investigated the effect of DLM on quail cerebrum neurons. Four groups of healthy quails were assigned (10 quails in each group), respectively given 0, 15, 30, and 45 mg/kg DLM by gavage for 12 weeks. Through the measurements of quail cerebrum, it was found that DLM exposure induced obvious histological changes, oxidative stress, and neurons apoptosis. To further explore the possible molecular mechanisms, we performed real-time quantitative PCR to detect the expression of endoplasmic reticulum (ER) stress-related mRNA such as glucose regulated protein 78 kD, activating transcription factor 6, inositol requiring enzyme, and protein kinase RNA (PKR)-like ER kinase. In addition, we detected ATP content in quail cerebrum to evaluate the functional status of mitochondria. The study showed that DLM exposure significantly increased the expression of ER stress-related mRNA and decreased ATP content in quail cerebrum tissues. These results suggest that chronic exposure to DLM induces apoptosis of quail cerebrum neurons via promoting ER stress and mitochondrial dysfunction. Furthermore, our results provide a novel explanation for DLM-induced apoptosis of avian cerebrum neurons.


Subject(s)
Cerebrum , Endoplasmic Reticulum Stress , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Cerebrum/metabolism , Mitochondria/metabolism , Neurons , Nitriles , Pyrethrins , Quail/metabolism , RNA, Messenger/metabolism
11.
Mol Neurobiol ; 59(5): 2946-2961, 2022 May.
Article in English | MEDLINE | ID: mdl-35247140

ABSTRACT

Deltamethrin (DLM) is a member of pyrethroid pesticide widely applied for agriculture and aquaculture, and its residue in the environment seriously threatens the bio-safety. The cerebrum might be vulnerable to pesticide-triggered oxidative stress. However, there is no specific antidote for treating DLM-triggered cerebral injury. Selenium (Se) is an essential trace element functionally forming selenoprotein glutathione peroxidase (GPX) in antioxidant defense. Se yeast (SY) is a common and effective organic form of Se supplement with high selenomethionine content. Accordingly, this study focused on investigating the therapeutic potential of SY on DLM-induced cerebral injury in quails after chronically exposing to DLM and exploring the underlying mechanisms. Quails were treated with/without SY (0.4 mg kg-1 SY added in standard diet) in the presence/absence of DLM (45 mg kg-1 body weight intragastrically) for 12 weeks. The results showed SY supplementation ameliorated DLM-induced cerebral toxicity. Concretely, SY elevated the content of Se and increased GPX4 level in DLM-treated quail cerebrum. Furthermore, SY enhanced antioxidant defense system by upregulating nuclear factor-erythroid-2-related factor 2 (Nrf2) associated members. Inversely, SY diminished the changes of apoptosis- and inflammation-associated proteins and genes including toll-like receptor 4 (TLR4). Collectively, our results suggest that dietary SY protects against DLM-induced cerebral toxicity in quails via positively regulating the GPX4/TLR4 signaling pathway. GPX4 may be a potential therapeutic target for insecticide-induced biotoxicity.


Subject(s)
Cerebrum , Pesticides , Selenium , Animals , Antioxidants/metabolism , Cerebrum/metabolism , Nitriles , Pyrethrins , Quail/metabolism , Saccharomyces cerevisiae/metabolism , Selenium/pharmacology , Signal Transduction , Toll-Like Receptor 4/metabolism
12.
J Adv Res ; 35: 129-140, 2022 01.
Article in English | MEDLINE | ID: mdl-35024197

ABSTRACT

Introduction: Hexavalent chromium (Cr(VI)), one of the toxic heavy metals, poses a serious threat to human and animal health. Protein acetylation regulates the structure and function of most proteins in a variety of ways. However, the hepatotoxicity of Cr(VI) and whether it is related to deacetylation remains largely unknown. Objectives: We aimed to explore the link between the deacetylation of silent information regulator two ortholog 1 (Sirt1) and hepatotoxicity induced by Cr(VI) exposure, and to better clarify the biological mechanism of liver injury induced by Cr(VI). Methods: We established a model of liver injury of K2Cr2O7 by injecting rats intraperitoneally for 35 days continuously and adding resveratrol (Res) to further explore the link between deacetylation and hepatotoxicity. Results: The results revealed that Cr(VI) induced inflammatory response and apoptosis in hepatocytes. Furthermore, Cr(VI) reduced Sirt1 expression and inhibited the deacetylation of Sirt1 to downstream key transcription factors, including nuclear factor erythroid 2-related factor 2 (Nrf2), Forkhead box O3 (FOXO3), and nuclear factor-kappa B (NF-κB). Conversely, when Res was administered as an activator of Sirt1, the deacetylation of Sirt1 was enhanced, and inflammatory response and apoptosis were significantly alleviated. Conclusion: In summary, this work firstly demonstrates that Cr(VI) induces liver injury in rat by inhibiting the deacetylation of Sirt1, which is of positive significance for protecting the natural environment and animal health from chronic Cr poisoning.


Subject(s)
Chemical and Drug Induced Liver Injury , Chromium , Animals , Apoptosis , Chemical and Drug Induced Liver Injury/etiology , Chromium/toxicity , NF-kappa B , Rats
13.
Biol Trace Elem Res ; 200(4): 1591-1597, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34060062

ABSTRACT

Mercury is widely used in industry and has caused global environmental pollution. Inorganic mercury accumulates in the body causes damage to many organs, and the kidney is the most susceptible to the toxic effects of mercury. However, the underlying specific molecular mechanism of renal injury induced by inorganic mercury remains unclear at the cellular level. Therefore, in order to understand its molecular mechanism, we used in vitro method. We established experimental models by treating human embryonic kidney epithelial cell line (HEK-293 T) cells with HgCl2 (0, 1.25, 5, and 20 µmol/L). We found that HgCl2 can lead to a decrease in cell viability and oxidative stress of HEK-293 T, which may be mediated by upregulation mitochondrial fission. In addition, HgCl2 exposure resulted in the mitochondrial disorder of HEK-293 T cells, which was mediated by downregulating the expression of silent information regulator two ortholog 1 (Sirt1)/peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) signaling pathway. In summary, our results suggest that HgCl2 induces HEK-293 T cell toxicity through promoting Sirt1/PGC-1α axis-mediated mitochondrial dynamics disorder and oxidative stress. Sirt1/PGC-1α may be an appealing pharmaceutical target curing HgCl2-induced kidney injury.


Subject(s)
Mercury , Mitochondrial Diseases , Epithelial Cells/metabolism , HEK293 Cells , Humans , Kidney/metabolism , Mercury/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Dynamics , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 1/metabolism
14.
Environ Toxicol ; 37(1): 69-78, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34569128

ABSTRACT

Mercury as a toxic heavy metal will accumulate in the body and induce various diseases through the food chain. However, it is unknown that the detailed mechanism of reproductive disorder induced by inorganic mercury in male mice to date. This study investigated the toxicological effect of mercuric chloride (HgCl2 ) exposure on reproductive system in male mice. Male Kunming mice received normal saline daily or HgCl2 (3 mg/kg bodyweight) by intraperitoneal injection for a week. The reproductive function was evaluated, and the HgCl2 exposure induced the decline of sperm quality, pregnancy rate, mean litter size, and survival rate. Notably, we firstly found the HgCl2 -induced immunosuppression and fibrosis in mice testis according to the results of RNA sequencing. Collectively, these findings demonstrate that HgCl2 exposure disrupts the reproductive system and induces testicular immunosuppression and fibrosis via inhibition of the CD74 signaling pathway in male mice.


Subject(s)
Mercury , Testis , Animals , Animals, Outbred Strains , Fibrosis , Immunosuppression Therapy , Male , Mercuric Chloride/toxicity , Mice , Oxidative Stress
15.
Food Chem Toxicol ; 155: 112382, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34216712

ABSTRACT

Deltamethrin (DLM) is a broad-spectrum and effective pyrethroid insecticide. However, DLM has good residual activity on most surfaces and many insects, so it poses a threat to the environment and health of animals and human. Exposure to DLM can cause kidney injury, but the mechanism is not well understood. Therefore, we investigated the possible mechanism of quail kidney injury induced by chronic exposure to different doses of DLM for 12 weeks. The results showed that chronic exposure to DLM induced apoptosis and fibrosis of quail kidney through the promotion of oxidative stress by down-regulating nuclear factor erythroid 2 related factor 2 (Nrf2), up-regulating the phosphorylation of p38 mitogen-activated protein kinases (p38MAPK). Furthermore, DLM-induced kidney apoptosis in quails as evidenced by increased expression of B-cell lymphoma gene 2-associated X while decreased expression of B-cell lymphoma-extra large. Simultaneously, DLM-induced kidney fibrosis in quails as evidenced by increased expression of fibrosis maker proteins. Overall, the results demonstrate that chronic DLM exposure induces kidney apoptosis and fibrosis via inhibition of the Nrf2/p38MAPK pathway. This study provides a new understanding for the mechanism of DLM-induced quail kidney injury and also provides a theoretical basis for treatment of the DLM poisoning.


Subject(s)
Apoptosis , Fibrosis , Insecticides , Kidney Diseases , Nitriles , Pyrethrins , Signal Transduction , Animals , Male , Apoptosis/drug effects , Fibrosis/chemically induced , Fibrosis/pathology , Fibrosis/physiopathology , Insecticides/toxicity , Kidney/drug effects , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney Diseases/physiopathology , Nitriles/toxicity , Oxidative Stress/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Pyrethrins/toxicity , Quail , Signal Transduction/drug effects , NF-E2-Related Factor 2
16.
Sci Total Environ ; 789: 148029, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34082215

ABSTRACT

Dibutyl phthalate (DBP)-an organic pollutant-is ubiquitous in the environment. DBP as an immune adjuvant is related to the development of multiple allergic diseases. However, the current research involving DBP-induced pulmonary toxicity remains poorly understood. Therefore, this research aimed to explore the adverse effect and potential mechanism of DBP exposure on the lungs in rats. In our study, ovalbumin was used to build a rat model of allergic airway inflammation to study any harmful effect of DBP exposure on lung tissues. Rats were treated by intragastric administration of DBP (500 mg kg-1 or 750 mg kg-1) and/or subcutaneous injection of SFN (4 mg kg-1). The results of histopathological analysis, cell count, and myeloperoxidase showed that DBP promoted the inflammatory damage of lungs. In the lung tissues, the detection of terminal deoxynucleotidyl transferase dUNT nick end labeling and oxidative stress indices showed that DBP significantly increased the level of apoptosis and oxidative stress. Western blot analysis indicated that DBP raised the expression level of thymic stromal lymphopoietin and reduced the nuclear expression level of nuclear factor-erythroid-2-related factor 2 (Nrf2), which was further verified by quantitative real-time PCR. Meanwhile, DBP treatment markedly up-regulated the inflammatory cytokines such as IL-4 and IL-13, and rat mast cell protease-2, a marker secreted by mast cells (MCs). Conversely, sulforaphane, a Nrf2 inducer, ameliorated the pulmonary damage induced by DBP in the above. Altogether, our data provides a new insight into the impacts of the activation of MCs on the DBP-induced pulmonary toxicity as well as the safety evaluation of DBP.


Subject(s)
Dibutyl Phthalate , NF-E2-Related Factor 2 , Animals , Cell Count , Dibutyl Phthalate/toxicity , Inflammation/chemically induced , Mast Cells/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats
17.
J Hazard Mater ; 417: 125984, 2021 09 05.
Article in English | MEDLINE | ID: mdl-34020360

ABSTRACT

Graphitized multi-walled carbon nanotubes (GMWCNTs) are a new type of nanomaterial. Recently, their production and application in biological medicine have grown rapidly. However, GMWCNTs may cause adverse health effects, including the common occupational disease of pulmonary fibrosis. Pulmonary fibrosis is a serious progressive disease that often leads to lung failure, high mortality, and disability, and there is no effective therapy currently available. Therefore, identifying new biomarkers of the disease is important to better understand the disease mechanisms and explore new therapeutic strategies. In this study, 40 µg of GMWCNTs was used to treat mice in vivo by pharyngeal aspiration, and different genes were screened by transcriptome sequencing. Activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signal pathway had an important effect on the development of pulmonary inflammation and fibrosis. GMWCNTs were then administered to the mice with a STING inhibitor (C-176). Inhibition of STING effectively decreased pulmonary inflammation and fibrosis in mice induced by GMWCNTs. Collectively, activation of the cGAS-STING signaling pathway is involved in GMWCNT-induced pulmonary inflammation and fibrosis in mice.


Subject(s)
Nanotubes, Carbon , Pneumonia , Animals , Membrane Proteins/genetics , Mice , Nanotubes, Carbon/toxicity , Nucleotidyltransferases/metabolism , Signal Transduction
18.
Environ Pollut ; 286: 117319, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33990053

ABSTRACT

Deltamethrin is the most common type II synthetic pyrethroid insecticide, and has posed widespread residues to environment. However, whether deltamethrin has potential toxic effects on quail cerebrum remains greatly obscure. Accordingly, we investigated the impact of chronic exposure to deltamethrin on oxidative stress and apoptosis in quail cerebrum. Quails upon 12-week exposure of deltamethrin (0, 15, 30, or 45 mg/kg body weight intragastric administration) were used as a cerebrum injury model. The results showed that deltamethrin treatment led to cerebral injury dose-dependently through the weakened antioxidant defense by downregulating nuclear factor erythroid-2-related factor 2 (Nrf2) and its downstream proteins levels and mRNA expression. Furthermore, deltamethrin treatment induced apoptosis in cerebrum by decreasing B-cell lymphoma gene 2 (Bcl-2) level, as well as increasing Jun N-terminal kinase3, caspase-3, and Bcl-2-associated X protein levels. Simultaneously, toll-like receptor 4 (TLR4) downstream inflammation-related genes or proteins were significantly up-regulated by deltamethrin dose-dependently. Altogether, our study demonstrated that chronic exposure to deltamethrin induces inflammation and apoptosis in quail cerebrums by promoting oxidative stress linked to inhibition of the Nrf2/TLR4 signaling pathway. These results provide a novel knowledge on the chronic toxic effect of deltamethrin, and establish a theoretical foundation for the evaluation of pesticide-induced health risk.


Subject(s)
Antioxidants , Cerebrum , Animals , Apoptosis , Nitriles , Oxidative Stress , Pyrethrins , Quail
19.
Front Genet ; 12: 600040, 2021.
Article in English | MEDLINE | ID: mdl-33747037

ABSTRACT

Machine learning (ML) is perhaps the most useful tool for the interpretation of large genomic datasets. However, the performance of a single machine learning method in genomic selection (GS) is currently unsatisfactory. To improve the genomic predictions, we constructed a stacking ensemble learning framework (SELF), integrating three machine learning methods, to predict genomic estimated breeding values (GEBVs). The present study evaluated the prediction ability of SELF by analyzing three real datasets, with different genetic architecture; comparing the prediction accuracy of SELF, base learners, genomic best linear unbiased prediction (GBLUP) and BayesB. For each trait, SELF performed better than base learners, which included support vector regression (SVR), kernel ridge regression (KRR) and elastic net (ENET). The prediction accuracy of SELF was, on average, 7.70% higher than GBLUP in three datasets. Except for the milk fat percentage (MFP) traits, of the German Holstein dairy cattle dataset, SELF was more robust than BayesB in all remaining traits. Therefore, we believed that SEFL has the potential to be promoted to estimate GEBVs in other animals and plants.

20.
Sci Adv ; 7(2)2021 Jan.
Article in English | MEDLINE | ID: mdl-33523978

ABSTRACT

Bioinspired nano/microswarm enables fascinating collective controllability beyond the abilities of the constituent individuals, yet almost invariably, the composed units are of single species. Advancing such swarm technologies poses a grand challenge in synchronous mass manipulation of multimaterials that hold different physiochemical identities. Here, we present a dynamic thermal trapping strategy using thermoresponsive-based magnetic smart nanoparticles as host species to reversibly trap and couple given nonmagnetic entities in aqueous surroundings, enabling cross-species smart nanoparticle swarms (SMARS). Such trapping process endows unaddressable nonmagnetic species with efficient thermo-switchable magnetic response, which determines SMARS' cross-species synchronized maneuverability. Benefiting from collective merits of hybrid components, SMARS can be configured into specific smart modules spanning from chain, vesicle, droplet, to ionic module, which can implement localized or distributed functions that are single-species unachievable. Our methodology allows dynamic multimaterials integration despite the odds of their intrinsic identities to conceive distinctive structures and functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...