Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(15)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37571163

ABSTRACT

The autofluorescence phenomenon is an inherent characteristic of lignified cells. However, in the case of Lophira alata (L. alata), the autofluorescence is nearly imperceptible during occasional fluorescence observations. The aim of this study is to investigate the mechanism behind the quenching of lignin's autofluorescence in L. alata by conducting associated experiments. Notably, the autofluorescence image of L. alata observed using optical microscopy appears to be quite indistinct. Abundant extractives are found in the longitudinal parenchyma, fibers, and vessels of L. alata. Remarkably, when subjected to a benzene-alcohol extraction treatment, the autofluorescence of L. alata becomes progressively enhanced under a fluorescence microscope. Additionally, UV-Vis absorption spectra demonstrate that the extractives derived from L. alata exhibit strong light absorption within the wavelength range of 200-500 nm. This suggests that the abundant extractives in L. alata are probably responsible for the autofluorescence quenching observed in the cell walls. Moreover, the presence and quantity of these extractives have a significant impact on the fluorescence intensity of lignin in wood, resulting in a significant decrease therein. In future studies, it would be interesting to explore the role of complex compounds such as polyphenols or terpenoids, which are present in the abundant extractives, in interfering with the fluorescence quenching of lignin in L. alata.

2.
ACS Omega ; 7(4): 3483-3490, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35128257

ABSTRACT

Unsaturated polyester resin (UPR) with good chemical resistance, excellent mechanical properties, and formaldehyde-free shows great potentials in the wood industry. In this study, the mechanical strength, thermostability, dynamic thermomechanical property, and interfacial bonding of bamboo particle boards (BPBs) made from UPR adhesives with toluene diisocyanate (TDI) as the coupling agent were explored. The results showed that covalent bonds were formed among TDI, bamboo particles, and UPR, which could significantly enhance the mechanical strength. The internal bonding strength, modulus of elasticity, and modulus of rupture of treated BPBs were 1.36, 3010, and 19.6 MPa with the increment of 1250, 514, and 833%, respectively, compared to the control samples. Also, the thickness swelling rate of the BPB was 4.6%, much lower than that of the control, with a decrease of 92%. The thermostability of the treated BPB was also improved. As a result, the BPB using UPR as the adhesive and TDI as the coupling agent shows better usability, higher efficiency, and excellent mechanical strength.

3.
Materials (Basel) ; 15(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35160823

ABSTRACT

The cutting power consumption of milling has direct influence on the economic benefits of manufacturing particle boards. The influence of the milling parameters on the cutting power were investigated in this study. Experiments and data analyses were conducted based on the response surface methodology. The results show that the input parameters had significant effects on the cutting power. The high rake angle reduced the cutting force. Thus, the cutting power decreased with the increase in the rake angle and the cutting energy consumption was also reduced. The cutting power increased with the rotation speed of the main shaft and the depth of milling induced the impact resistance between the milling tool and particle board and the material removal rate. The p-values of the created models and input parameters were less than 0.05, which meant they were significant for cutting power and power efficiency. The depth of milling was the most important factor, followed by the rotation speed of the main shaft and then the rake angle. Due to the high values of R2 of 0.9926 and 0.9946, the quadratic models were chosen for creating the relationship between the input parameters and response parameters. The predicted values of cutting power and power efficiency were close to the actual values, which meant the models could perform good predictions. To minimize the cutting power and maximize the power efficiency for the particle board, the optimized parameters obtained via the response surface methodology were 2°, 6991.7 rpm, 1.36 mm for rake angle, rotation speed of the main shaft and depth of milling, respectively. The model further predicted that the optimized parameters combination would achieve cutting power and power efficiency values of 52.4 W and 11.9%, respectively, with the desirability of 0.732. In this study, the influence of the input parameters on the cutting power and power efficiency are revealed and the created models were useful for selecting the milling parameters for particle boards, to reduce the cutting power.

4.
RSC Adv ; 11(54): 34416-34423, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-35497308

ABSTRACT

Aluminum phosphate (AP) shows great potential to replace formaldehyde-based adhesives in the wood industry, except for its weak hygroscopic resistance and low wet bonding strength. This study chose PVA as an AP modifier to prepare a PVA-AP organic-inorganic hybrid adhesive (PAP). The preparation, bonding mechanism and heat resistant property of PAP were studied by using X-ray photoelectron spectroscopy (XPS), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetry-differential scanning calorimetry (TG-DSC), nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The result showed that covalent bonds between PVA and AP were built. The mechanical properties of PAP improved remarkably; the dry and wet bonding strength are 2.28 and 0.79 MPa with 15.2% and 690% increment, respectively, compared to the control samples. The thermostabilities of PAP and plywood samples were improved. In conclusion, PVA could effectively improve the hygroscopic resistance and low wet bonding strength of AP adhesives.

5.
ACS Appl Mater Interfaces ; 12(17): 19511-19518, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32271530

ABSTRACT

Solar steam generation as a promising solar energy conversion technology has attracted considerable interest in achieving seawater desalination and water purification. Although wood with fast water transportation and excellent heat localization has drawn particular interest in regard to its application for solar steam generation, challenges still remain in terms of its complicated processing techniques and relatively low efficiency. Here, we propose a facile, cost-efficient, and scalable brushing method to prepare an aluminophosphate-treated wood (Wood@AlP) solar steam generation device. The aluminophosphate compound deposited on the wood surface can not only be considered as the Lewis acid catalyst capable of accelerating the formation of the carbon layer but also provide an aluminophosphate layer with a hierarchical porous structure, which is beneficial for broad solar absorption and vapor escape. On the other hand, benefiting from the natural hydrophilicity, low thermal conductivity, and excellent water transportation of wood, the obtained Wood@AlP device can float on seawater and exhibit a high solar thermal efficiency of 90.8% with a net evaporation rate of 1.423 kg m-2 h-1 under 1 sun illumination.

6.
Materials (Basel) ; 12(13)2019 Jul 06.
Article in English | MEDLINE | ID: mdl-31284578

ABSTRACT

In order to better provide a theoretical basis for the machining of luxury vinyl tiles, a helical milling experiment was conducted by using diamond cutting tools, and special attention was given to the trends of cutting force and surface roughness in respect to tool geometry and cutting parameters. The results showed that the resultant force was negatively correlated to the helix angle and cutting speed, but positively correlated with the cutting depth. Then, that the surface roughness increased with a decrease of the helix angle and an increase of cutting depth, while as cutting speed raised, the surface roughness first declined and then increased. Thirdly, the cutting depth was shown to have the greatest influence on both cutting force and surface roughness, followed by helix angle and cutting speed. Fourth, the contribution of cutting depth only was significant to cutting force, while both the helix angle and cutting speed had insignificant influence on the cutting force and surface roughness. Finally, the optimal cutting conditions were proposed for industrial production, in which the helix angle, cutting speed and cutting depth were 70°, 2200 m/min and 0.5 mm, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...