Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.666
Filter
1.
Data Brief ; 54: 110302, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962189

ABSTRACT

GNSS signals are vulnerable to spoofing and interference, which poses a threat to the security of critical national infrastructure. GNSS data sets with spoofing and jamming are lacking, which hinders the research of GNSS anti-spoofing and anti-interference techniques. This data article presents a dataset recorded by a low-cost sensor deployed on the balcony at the 5th floor of the Science Hall of Yunnan University (25°3'26'' N, 102°41'55'' E). The sensor suite includes a GNSS antenna, a u-blox GNSS receiver and an embedded computer. In the experiment, interferences including spoofing and jamming were irregularly emitted using a SDR HackRF One and a commercial jammer, respectively. The dataset collected by the receiver consists of two parts: (1) raw data; (2) processed data. The types of the raw data include hardware information, satellite information and receiver parameters of GPS, Campass, Galileo, GLONASS and QZSS systems. The processed data are extracted from the raw data, including the signals, Doppler shift, pseudorange observations, carrier phase, position (latitude, longitude, and altitude), satellite azimuth and elevation angles, etc. The provided datasets are interesting for the GNSS security, anti-jamming and anti-spoofing mechanisms based scientific communities.

2.
Small ; : e2403743, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973074

ABSTRACT

Photocatalytic hydrogen peroxide production from water and oxygen offers a clean and sustainable alternative to the conventional energy-intensive anthraquinone oxidation method. Compared to powdered covalent triazine frameworks (CTFs), the film morphology of CTFs provides better connectivity in 2D, yielding several advantages: more efficient connections between active sites, reduced electron-hole pair recombination, increased resistance to superoxide radical induced corrosion, and decreased light scattering. Leveraging these benefits, it has incorporated dual active sites for both the oxygen reduction reaction (ORR) and the water oxidation reaction (WOR) into a CTF film system. This dual-active CTF film demonstrated an exceptional hydrogen peroxide production rate of 19 460 µmol h⁻¹ m⁻2 after 1 h and 17 830 µmol h⁻¹ m⁻2 after 5 h under visible light irradiation (≥420 nm) without the need for sacrificial agents.

3.
Article in English | MEDLINE | ID: mdl-38976200

ABSTRACT

PURPOSE OF REVIEW: Plant-derived foods are one of the most common causative sources of food allergy in China, with a significant relationship to pollinosis. This review aims to provide a comprehensive overview of this food-pollen allergy syndrome and its molecular allergen diagnosis to better understand the cross-reactive basis. RECENT FINDINGS: Food-pollen cross-reactivity has been mainly reported in Northern China, Artemisia pollen is the major related inhalant source, followed by tree pollen (Betula), while grass pollen plays a minor role. Pollen allergy is relatively low in Southern China, with allergies to grass pollen being more important than weed and tree pollens. Rosaceae fruits and legume seeds stand out as major related allergenic foods. Non-specific lipid transfer protein (nsLTP) has been found to be the most clinically relevant cross-reacting allergenic component, able to induce severe reactions. PR-10, profilin, defensin, chitinase, and gibberellin-regulated proteins are other important cross-reactive allergen molecules. Artemisia pollen can induce allergenic cross-reactions with a wide range of plant-derived foods in China, and spring tree pollens (Betula) are also important. nsLTP found in both pollen and plant-derived food is considered the most significant allergen in food pollen cross-reactivity. Component-resolved diagnosis with potential allergenic proteins is recommended to improve diagnostic accuracy and predict the potential risk of causing allergic symptoms.

4.
Article in English | MEDLINE | ID: mdl-38976319

ABSTRACT

BACKGROUND: The study builds on previous research and its limitations, which indicate the need for further investigation in prospective cohorts. OBJECTIVE: Our aim was to explore the association between estimated 24-h urinary sodium excretion (indicative of daily sodium consumption) and the occurrence of pancreatic cancer in the UK Biobank's large prospective cohort. METHODS: Using the INTERSALT equation, the study computed estimated 24-h urinary sodium excretion by analyzing the baseline spot urine sodium measurements of 434,372 individuals enrolled in the UK Biobank. Pancreatic cancer cases were identified through UK cancer registries. Adjusted Cox proportional hazards models were employed to evaluate hazard ratios (HR) and 95% confidence intervals (CI) for the association between estimated 24-h urinary sodium excretion and the risk of pancreatic cancer. RESULTS: Over a median follow-up period of 13.8 years, 1,765 cases of pancreatic cancer were detected. The multivariable adjusted Cox model showed that each 1-gram rise in estimated 24-h urinary sodium excretion corresponded to a 1.12 HR for incident pancreatic cancer (95% CI: 1.03, 1.22). The estimated HR for 24-hour urinary sodium excretion in binary form was 1.23 (95% CI: 1.05, 1.44). Compared to the lowest group, the group with the highest estimated 24-h urinary sodium excretion exhibited an HR of 1.38 (95% CI: 1.21, 1.58). CONCLUSION: These results propose an association between elevated sodium consumption and a heightened risk of pancreatic cancer. Further validation and exploration of potential mechanisms are warranted.

5.
Heliyon ; 10(12): e32693, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39005920

ABSTRACT

Objective: To analyze the clinical features and genetic etiology of a patient with developmental and epileptic encephalopathy. Methods: The clinical information and peripheral blood of the patient and their family members were collected before the whole exome sequencing analysis was performed and Sanger sequencing was employed to verify the potential variant. Results: The patient presented with epilepsy and cerebral palsy with his parents, brother, and sister being all healthy. Whole exome sequencing analysis revealed that the child carried the paternal c.823del (p. R275Gfs*31) heterozygous variant and the maternal c.2456del (p.V819Gfs*190) heterozygous variant of the CACNA1B gene. Pedigree verification found that the elder brother and amniotic fluid of fetus in womb carried the paternal c.823del heterozygous variant, and the elder sister carried the maternal c.2456del heterozygous variant, which conformed to the law of autosomal recessive inheritance. Neither of these two variants has been reported in the literature and has not been included in the Genomic Mutation Frequency Database (gnomAD); according to the American Academy of Medical Genetics and Genomics Variation Grading Guidelines (ACMG), both variants are classified as pathogenic variants (PVS1+PM2-Supporting + PM3). Conclusion: This study reported the first case of a child with neurodevelopmental disorder and epilepsy caused by a new compound heterozygous variant of the CACNA1B gene in China, clarified its genetic etiology, enriched the mutation spectrum and disease spectrum of CACNA1B gene, and provided a basis for prenatal diagnosis of the family.

6.
Food Funct ; 15(14): 7631-7640, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38946529

ABSTRACT

Background: The Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet is emerging as a promising candidate for preventive measures against inflammatory bowel disease (IBD), though there is currently no direct evidence from population-based studies. This study aims to bridge the gap in understanding of the association of the MIND diet with IBD risk. Methods: We utilized data from 187 490 participants in the UK Biobank who provided dietary information and were free of IBD at baseline. Dietary information was obtained using a validated web-based 24-hour dietary recall questionnaire. A MIND diet score was evaluated based on the intake of ten beneficial and five unhealthy food groups and the scores were further grouped into tertiles. The outcome of interest was incident IBD, Crohn's disease (CD), and ulcerative colitis (UC). Multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazard models adjusted for demographic characteristics, lifestyle factors, cancer history, and other dietary factors. Mediation analyses were performed to evaluate the role of systemic inflammation and metabolic disorders represented by the integrated biomarkers in the MIND diet-IBD association. Results: After a mean follow-up of 10.7 years, we documented 825 incident IBD cases (250 CD and 575 UC). The average age of the participants was 56.2 years, of which 55.0% were females. We found that greater adherence to the MIND diet, represented by a higher diet score, was associated with a lower risk of IBD (HRcomparing extreme tertiles 0.74, 95% CI 0.62-0.90, p = 0.002; p for trend = 0.005), CD (HR 0.66, 95% CI 0.47-0.94, p = 0.022; p for trend = 0.023), and UC (HR 0.78, 95% CI 0.62-0.98, p = 0.031; p for trend = 0.022). The associations were partially mediated by metabolic and inflammation status (mediation proportion: 5.5-15.9%). Conclusion: We found higher adherence to the MIND diet was associated with a lower risk of IBD, and that inflammatory and metabolic conditions may play an important role in the underlying mechanistic pathways.


Subject(s)
Diet, Mediterranean , Dietary Approaches To Stop Hypertension , Inflammatory Bowel Diseases , Humans , Female , Male , Middle Aged , Prospective Studies , Inflammatory Bowel Diseases/diet therapy , Adult , Aged , Risk Factors , United Kingdom/epidemiology , Patient Compliance , Crohn Disease/prevention & control
7.
ACS Synth Biol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012160

ABSTRACT

Developing more robust and productive industrial yeast is crucial for high-efficiency biomanufacturing. However, the challenges posed by the long time required and the low abundance of mutations generated through genomewide evolutionary engineering hinder the development and optimization of desired hosts for industrial applications. To address these issues, we present a novel solution called the Genomewide Evolution-based CRISPR/Cas with Donor-free (GEbCD) system, in which nonhomologous-end-joining (NHEJ) repair can accelerate the acquisition of highly abundant yeast mutants. Together with modified rad52 of the DNA double-strand break repair in Saccharomyces cerevisiae, a hypermutation host was obtained with a 400-fold enhanced mutation ability. Under multiple environmental stresses the system could rapidly generate millions of mutants in a few rounds of iterative evolution. Using high-throughput screening, an industrial S. cerevisiae SISc-Δrad52-G4-72 (G4-72) was obtained that is strongly robust and has higher productivity. G4-72 grew stably and produced ethanol efficiently in multiple-stress environments, e.g. high temperature and high osmosis. In a pilot-scale fermentation with G4-72, the fermentation temperature was elevated by 8 °C and ethanol production was increased by 6.9% under the multiple stresses posed by the industrial fermentation substrate. Overall, the GEbCD system presents a powerful tool to rapidly generate abundant mutants and desired hosts, and offers a novel strategy for optimizing microbial chassis with regard to demands posed in industrial applications.

8.
Front Immunol ; 15: 1435139, 2024.
Article in English | MEDLINE | ID: mdl-39021564

ABSTRACT

Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends on iron and is characterized by the accumulation of lipid peroxides to lethal levels. Ferroptosis involves multiple pathways including redox balance, iron regulation, mitochondrial function, and amino acid, lipid, and glycometabolism. Furthermore, various disease-related signaling pathways also play a role in regulating the process of iron oxidation. In recent years, with the emergence of the concept of ferroptosis and the in-depth study of its mechanisms, ferroptosis is closely associated with various biological conditions related to kidney diseases, including kidney organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its involvement in kidney diseases. It summarizes research on ferroptosis in kidney diseases within the frameworks of metabolism, reactive oxygen biology, and iron biology. The article introduces key regulatory factors and mechanisms of ferroptosis in kidney diseases, as well as important concepts and major open questions in ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs can be made in understanding the regulation mechanism of ferroptosis and utilizing ferroptosis to promote treatments for kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD), diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new approach to research, prevent, and treat clinical kidney diseases.


Subject(s)
Ferroptosis , Kidney Diseases , Ferroptosis/drug effects , Humans , Kidney Diseases/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Animals , Iron/metabolism , Signal Transduction , Reactive Oxygen Species/metabolism , Molecular Targeted Therapy
9.
Biomol Biomed ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38958450

ABSTRACT

Distinct brain regions are differentially affected during the various stages of Alzheimer's disease (AD). While the hippocampus and cortex are known to play significant roles, the involvement of the cerebellum has received less attention. Understanding the changes in diverse brain regions is essential to unravel the neuropathological mechanism in early-stage AD. Our research aimed to explore and compare amyloid-ß (Aß) pathology and gene expression profiles across the hippocampus, cortex, and cerebellum in the early stages of the Amyloid Precursor Protein/Presenilin-1 (APP/PS1) mouse model. By 7 months of age, significant Aß plaque accumulation was observed in the hippocampus and cortex of APP/PS1 mice, while no such deposits were found in the cerebellum. Gene expression analysis revealed predominant effects on immune response pathways in the hippocampus and cortex. Even in the absence of Aß deposition, notable gene expression changes were observed in the cerebellum of APP/PS1 mice. Intriguingly, Neuronal PAS Domain protein 4 (Npas4) expression was consistently down-regulated across all brain regions, independent of Aß plaque presence. Our findings reveal distinct transcriptomic alterations and Aß pathology in select cerebral regions during the initial phase of AD. Notably, the diminished expression of the Npas4 across three brain regions implies that Npas4 could play a pivotal role in the early pathogenesis of AD.

10.
MedComm (2020) ; 5(7): e634, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988492

ABSTRACT

Mitogen-activated protein kinase-activated protein kinase 2 (MK2) emerges as a pivotal target in developing anti-cancer therapies. The limitations of ATP-competitive inhibitors, due to insufficient potency and selectivity, underscore the urgent need for a covalent irreversible MK2 inhibitor. Our initial analyses of The Cancer Genome Atlas database revealed MK2's overexpression across various cancer types, especially those characterized by inflammation, linking it to poor prognosis and highlighting its significance. Investigating MK2's kinase domain led to the identification of a unique cysteine residue, enabling the creation of targeted covalent inhibitors. Compound 11 was developed, demonstrating robust MK2 inhibition (IC50 = 2.3 nM) and high selectivity. It binds irreversibly to MK2, achieving prolonged signal suppression and reducing pathological inflammatory cytokines in macrophages. Furthermore, compound 11 or MK2 knockdown can inhibit the tumor-promoting macrophage M2 phenotype in vitro and in vivo. In macrophage-rich tumor model, compound 11 notably slowed growth in a dose-dependent manner. These findings support MK2 as a promising anticancer target, especially relevant in cancers fueled by inflammation or dominated by macrophages, and provide compound 11 serving as an invaluable chemical tool for exploring MK2's functions.

11.
Acta Trop ; 257: 107310, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38955319

ABSTRACT

PURPOSE: To investigate the clinical features of hand, foot, and mouth disease (HFMD) caused by coxsackievirus A6 (CVA6) and this work may help early diagnose of atypical HFMD. METHODS: From January 2013 to December 2019, a total of 7,208 patients with a clinical diagnosis of HFMD in Xi'an Children's Hospital, Xi'an Central Hospital, and Xi'an Jiaotong University Second Affiliated Hospital, were included in this observational study. The clinical data, specimens and follow-up results were collected. Real-time RT‒PCR was performed for the detection and typing of enterovirus nucleic acids. RESULTS: Of the 7,208 clinically diagnosed HFMD patients, 5,622 were positive for enterovirus nucleic acids, and the positive proportions of CVA6, enterovirus 71 (EV-A71), coxsackievirus A16 (CVA16), and other enteroviruses were 31.0% (1,742/5,622), 27.0% (1,518/5,622), 35.0% (1,968/5,622), and 7.0% (394/5,622), respectively. Based on the etiology, patients were divided into CVA6 group, EV-A71group, and CVA16 group. The mean age at onset was significantly higher in the CVA6 group (4.62±2.13 years) than in the EV-A71 group and CVA16 group (3.45±2.25 years and 3.35±2.13 years, respectively; both P < 0.05). The male/female ratio was 1.45 (1,031/711) in the CVA6 group and was not significantly different from the other two groups. The incidence of fever was significantly higher in the CVA6 group [82.5% (1,437/1,742)] than in the EV-A71 group [51.3% (779/1,518)] and the CVA16 group [45.9% (903/1,968)] (P < 0.05). In the CVA6 group, the rashes were more frequently on the trunk and elbows/knees and were significantly different from the other two groups (P < 0.05). The number of patients with two or more rash morphologies was significantly higher in the CVA6 group than in the other two groups (P < 0.05). The incidence of bullous rash in the CVA6 group [20.2%; n = 352] was higher than in the EV-A71 group [0.33%; n = 5] and CVA16 group [0.66%; n = 13] (P < 0.05). The incidence of neurological complications was significantly higher in the EV-A71 group [52.1% (791/1,518)] than in the CVA16 group [5.1% (100/1,968)] and the CVA6 group [0.8% (14/1,742)] (P < 0.05). In the follow-up period, 160 patients (9.2%) with CVA6 HFMD experienced onychomadesis, but no onychomadesis was observed in the EV-A71 and CVA16 groups. The average WBC count was significantly higher in the CVA6 group than in the CVA16 group (P < 0.05). The number of patients with increased CRP was significantly larger in the CVA6 group than in the CVA16 group but was significantly smaller than that in the EV-A71 group (P < 0.05). CONCLUSIONS: CVA6 has become one of the main pathogens of HFMD in the Xi'an area during 2013-2019. The main clinical manifestations were slightly different from those of HFMD caused by EV-A71 or CVA16, with a higher frequency of fever, diverse morphologies and diffuse distribution of rashes, fewer neurological complications and some onychomadesis.

12.
Heliyon ; 10(13): e33217, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027501

ABSTRACT

Background: Diabetic nephropathy represents a significant microvascular complication of diabetes, characterized by extracellular matrix accumulation, loss of cell-cell junctions, microalbuminuria, and diminished creatinine clearance. Despite its prevalence, therapeutic options dedicated to this condition are currently lacking. Natural products like bioflavonoids have garnered attention for their potential therapeutic benefits. The present study aimed to evaluate the efficacy of a bioflavonoid combination, including ginger extract, soy extract, and hesperetin, in a diabetic rat model. Methods: Diabetes was initiated in the rat pups via intraperitoneal injection of streptozotocin on the fifth postnatal day. After six weeks, rats exhibiting blood sugar levels exceeding 160 mg/dL were allocated into diabetic control and treatment groups, with eight animals each. A subset of rats received citrate buffer as a control. The treatment group received the bioflavonoid combination orally for twenty-four weeks. Various parameters, including glycemic levels, urinary parameters, antioxidant status, mRNA expression via Western blot, gel zymography, and immunohistochemistry, were assessed at the study's conclusion. Results: The bioflavonoid combination demonstrated significant reductions in hyperglycemia and various urinary parameters compared to controls. Notably, it modulated MMP-9/TIMP-1 expression, upregulated GLUT-4, and downregulated TGF-ß. Additionally, the combination enhanced total antioxidant capacity, indicating potential antioxidative benefits. Conclusions: This study highlights the therapeutic potential of a bioflavonoid combination (ginger extract, soy extract, and hesperetin) in improving renal function in diabetic nephropathy. By modulating key factors such as MMP-9/TIMP-1, TGF-ß, and GLUT-4, this combination presents a promising avenue for further exploration in managing diabetic nephropathy. These findings underscore the importance of natural products as potential therapeutic agents in addressing diabetic complications.

13.
Front Public Health ; 12: 1433252, 2024.
Article in English | MEDLINE | ID: mdl-39015390

ABSTRACT

Objectives: The application of artificial intelligence (AI) in healthcare is an important public health issue. However, few studies have investigated the perceptions and attitudes of healthcare professionals toward its applications in nursing. This study aimed to explore the knowledge, attitudes, and concerns of healthcare professionals, AI-related professionals, and others in China toward AI in nursing. Methods: We conducted an online cross-sectional study on nursing students, nurses, other healthcare professionals, AI-related professionals, and others in China between March and April 2024. They were invited to complete a questionnaire containing 21 questions with four sections. The survey followed the principle of voluntary participation and was conducted anonymously. The participants could withdraw from the survey at any time during the study. Results: This study obtained 1,243 valid questionnaires. The participants came from 25 provinces and municipalities in seven regions of China. Regarding knowledge of AI in nursing, 57% of the participants knew only a little about AI, 4.7% did not know anything about AI, 64.7% knew only a little about AI in nursing, and 13.4% did not know anything about AI in nursing. For attitudes toward AI in nursing, participants were positive about AI in nursing, with more than 50% agreeing and strongly agreeing with each question on attitudes toward AI in nursing. Differences in the numbers of participants with various categories of professionals regarding knowledge and attitudes toward AI in nursing were statistically significant (p < 0.05). Regarding concerns and ethical issues about AI in nursing, every participant expressed concerns about AI in nursing, and 95.7% of participants believed that it is necessary to strengthen medical ethics toward AI in nursing. Conclusion: Nursing students and healthcare professionals lacked knowledge about AI or its application in nursing, but they had a positive attitude toward AI. It is necessary to strengthen medical ethics toward AI in nursing. The study's findings could help develop new strategies benefiting healthcare.


Subject(s)
Artificial Intelligence , Attitude of Health Personnel , Health Knowledge, Attitudes, Practice , Humans , Cross-Sectional Studies , China , Female , Male , Adult , Surveys and Questionnaires , Middle Aged , Young Adult , Health Personnel/psychology , Health Personnel/statistics & numerical data
14.
Int J Biol Macromol ; 276(Pt 1): 133792, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992539

ABSTRACT

Doxorubicin (Dox), a chemotherapeutic agent frequently used to treat cancer, elicits cardiotoxicity, a condition referred to as Dox-induced cardiotoxicity (DIC), and ferroptosis plays a contributory role in its pathophysiology. Fucoidan, a polysaccharide with various biological activities and safety profile, has potential therapeutic and pharmaceutical applications. This study aimed to investigate the protective effects and underlying mechanisms of fucoidan in DIC. Echocardiography, biomarkers of cardiomyocyte injury, serum creatine kinase, creatine kinase isoenzyme and lactate dehydrogenase, as well as histological staining results, revealed that fucoidan significantly reduced myocardial damage and improved cardiac function in DIC mice. Transmission electron microscopy; levels of lipid reactive oxygen species, glutathione, and malondialdehyde; ferroptosis-related markers; and regulatory factors such as glutathione peroxidase 4 (GPX4), transferrin receptor protein-1, ferritin heavy chain-1, heme oxygenase-1 in the heart tissue were measured to explore the effect of fucoidan on Dox-induced ferroptosis. These results suggested that fucoidan could inhibit cardiomyocyte ferroptosis caused by Dox. In vitro experiments revealed that silencing nuclear factor-erythroid 2-related factor 2 (Nrf2) in cardiomyocytes reduced the inhibitory effect of fucoidan on ferroptosis. Hence, fucoidan has the potential to ameliorate DIC by inhibiting ferroptosis via the Nrf2/GPX4 pathway.

15.
Sci Total Environ ; 947: 174765, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004362

ABSTRACT

Widely-used C60 fullerene nanoparticles (C60) result in their release into the aquatic environment, which may affect the distribution and toxicity of pollutants such as arsenic (As), to aquatic organism. In this study, arsenate (As(V)) accumulation, speciation and subcellular distribution was determined in Danio rerio (zebrafish) intestine, head and muscle tissues in the presence of C60. Meanwhile we compared how single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO) and graphene (GN) nanoparticles alter the behaviors of As(V). Results showed that C60 significantly inhibited As accumulation and toxicity in D. rerio, due to a decrease in total As and monomethylarsonic acid (MMA) and As(V) species concentrations, a lower relative distribution in the metal-sensitive fraction (MSF). It was attributed that C60 may coat As(V) ion channels and consequently, affect the secretion of digestive enzymes in the gut, favoring As excretion and inhibiting As methylation. Similarly, MWCNTs reduced the species concentration of MMA and As(V) in the intestines, low GSH (glutathione) contents in the intestine. Due to the disparity of other carbon-based nanomaterial morphologies, SWCNTs, GO and GN exhibited the various effects on the toxicity of As(V). In addition, the possible pathway of arsenobetaine (AsB) biosynthesis included migration from the intestine to muscle in D. rerio, with the precursor of AsB likely to be 2-dimethylarsinylacetic acid (DMAA). The results of this study suggest that C60 is beneficial for controlling As(V) pollution and reducing the impact of As(V) biogeochemical cycles throughout the ecosystem.

16.
Bioresour Bioprocess ; 11(1): 68, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012554

ABSTRACT

To understand the ecology of species and promote biotechnology through beneficial strain selection for improving starch yield in maize wet-milling steeping, bacterial diversity and community structure during the counter-current steeping process in a commercial steeping system were characterized and investigated. The microbial diversity in the steeping liquor, which consisted of 16 phyla, 131 families, and 290 genera, was more abundant compared to those present on the surface of unsteeped maize. As the counter-current steeping progressed, exposing newer maize to the older steepwater, Lactobacillus dominated, replacing Rahnella, Pseudomonas, Pantoea, and Serratia. The thermophilic and acidophilic microbial consortia were enriched through adaptive evolution engineering and employed to improve starch yield. Several steeping strategies were evaluated, including water alone, SO2 alone, mono-culture of B. coagulans, microbial consortia, and a combination of consortium and SO2. Combining the microbial consortium with SO2 significantly increased the starch yield to, about 66.4 ± 0.5%, a 22% and 46% increase over SO2 alone and the consortium alone, respectively. Scanning electron microscope (SEM) of steeped maize structure indicated that the combination of consortium and SO2 disrupted the protein matrix and widened gaps between starch granules in maize endosperm. This released proteins into the steepwater and left starch granules in the aleurone layer. The steeping strategy of using thermophilic and acidophilic microbial consortium as additives shows potential application as an environmentally friendly alternative to conventional maize steeping procedures.

17.
Front Med (Lausanne) ; 11: 1388766, 2024.
Article in English | MEDLINE | ID: mdl-38938380

ABSTRACT

Background: Limited is known on the profiles of apple allergy in China. Objective: To explore the clinical significance of apple allergen components in northern China. Methods: This study recruited 40 participants and categorized into apple tolerance (n = 19) and allergy (n = 21) group. The latter was categorized into oral allergy symptoms (OAS, n = 14) and generalized symptoms (GS, n = 7). All participants underwent ImmunoCAP screening to assess sIgE levels of birch, apple, and their components. Results: The sensitization rates were 90% for Bet v 1, 85% for Mal d 1, 35% for Bet v 2, and 20% for Mal d 3. The overall positive rate for apple allergens was 97.5%, with half demonstrating mono-sensitization to Mal d 1. Birch, Bet v 1 and Mal d 1 sIgE levels had consistent areas under the curve (AUC 0.747, p = 0.037; AUC 0.799, p = 0.012; AUC 0.902, p < 0.001 respectively) in diagnosing apple allergy. The optimal cut-off values were determined to be 22.85 kUA/L (63.6% sensitivity, 85.7% specificity), 6.84 kUA/L (81.8% sensitivity, 71.4% specificity) and 1.61 kUA/L (93.8% sensitivity, 75.0% specificity), respectively. No allergens or components demonstrated diagnostic value in distinguishing between OAS and GS. Mal d 3 sensitization was correlated with mugwort allergy and higher risk of peach, nuts or legumes generalized allergy. Conclusion: Mal d 1 was major allergen and the best for diagnosing apple allergy. Mal d 3 does not necessarily indicate severe allergic reaction to apples in northern China but may indicate mugwort sensitization and an increased risk of peach, nuts or legumes allergy.

18.
Int Immunopharmacol ; 138: 112550, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941671

ABSTRACT

BACKGROUND: Sepsis is considered a high risk factor for new-onset atrial fibrillation (NOAF), with neutrophil extracellular traps (NETs) being implicated in the pathogenesis of numerous diseases. However, the precise role of NETs and NETs-related genes (NRGs) in the occurrence of NOAF in sepsis remains inadequately elucidated. The objective of this study was to identify hub NRGs connecting sepsis and AF, and to investigate the potential association between NETs and NOAF in sepsis. METHODS: The AF and sepsis microarray datasets were retrieved from the Gene Expression Omnibus (GEO) database for analysis of shared pathophysiological mechanisms and NRGs implicated in both sepsis and AF using bioinformatics techniques. The CIBERSORT algorithm was employed to assess immune cell infiltration and identify common immune characteristics in these diseases. Additionally, a rat model of lipopolysaccharide (LPS)-induced sepsis was utilized to investigate the association between NETs, NRGs, and sepsis-induced AF. Western blotting, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, immunohistochemistry, and immunofluorescence were employed to assess the expression of NRGs, the formation of NETs, and the infiltration of neutrophils. Electrophysiological analysis and multi-electrode array techniques were utilized to examine the vulnerability and conduction heterogeneity of AF in septic rats. Furthermore, intervention was conducted in LPS-induced sepsis rats using DNase I, a pharmacological agent that specifically targets NETs, in order to assess its impact on neutrophil infiltration, NETs formation, hub NRGs protein expression, and AF vulnerability. RESULTS: A total of 61 commonly differentially expressed genes (DEGs) and four hub DE-NRGs were identified in the context of sepsis and AF. Functional enrichment analysis revealed that these DEGs were predominantly associated with processes related to inflammation and immunity. Immune infiltration analysis further demonstrated the presence of immune infiltrating cells, specifically neutrophil infiltration, in both sepsis and AF. Additionally, a positive correlation was observed between the relative expression of the four hub DE-NRGs and neutrophil infiltration. In rats with LPS-induced sepsis, we observed a notable upregulation in the expression of four DE-NRGs, the formation of NETs, and infiltration of neutrophils in atrial tissue. Through electrophysiological assessments, we identified heightened vulnerability to AF, reduced atrial surface conduction velocity, and increased conduction heterogeneity in LPS-induced sepsis rats. Notably, these detrimental effects can be partially ameliorated by treatment with DNase I. CONCLUSIONS: Through bioinformatics analysis and experimental validation, we identified four hub NRGs in sepsis and AF. Subsequent experiments indicated that the formation of NETs in the atria may contribute to the pathogenesis of NOAF in sepsis. These discoveries offer potential novel targets and insights for the prevention and treatment of NOAF in sepsis.

19.
Int J Biol Macromol ; 275(Pt 1): 133255, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908630

ABSTRACT

This study aimed at gaining insight into the mechanism of interactions between pectin (PE), starch and unsaturated fatty acids (UFAs) in relation to structure, in vitro digestibility and release properties of starch. Due to the barrier and encapsulation effects of PE, the complexing behavior of potato starch (PtS) with linoleic acid (LOA) was enhanced, which increased the complexing index, the compactness of network structure, short-range ordered structure and relative crystallinity of PtS-LOA-PE films. These structural changes resulted in the increases of slowly digestible starch and resistant starch and in the decreases of first-order rate coefficient in PtS-LOA-PE films. Besides, the in vitro release results also showed that the release properties of PtS-LOA could be controlled by the PE addition with the decreases in LOA release rate and increase in LOA bioavailability under simulated gastrointestinal conditions. Notably, at different PtS-LOA:PE ratios, the PtS-LOA-PE film with the PtS-LOA:PE ratio of 5:1 showed the better complexing degree, structural order, anti-digestibility and colon-targeted release properties than other PtS-LOA-PE films. These results indicated that PE influenced the release properties of the PtS-LOA-PE films, which was closely related to their complexing degree, structural order, and digestibility. This study provided new insights into the design of resistant films for delivery of UFAs to colon.

20.
Acta Biomater ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908418

ABSTRACT

Sonodynamic therapy (SDT) is emerging as a promising modality for cancer treatment. However, improving the tumor bioavailability and anti-hypoxia capability of sonosensitizers faces a big challenge. In this work, we present a tumor microenvironment (TME)-mediated nanomorphology transformation and oxygen (O2) self-production strategy to enhance the sonodynamic therapeutic efficacy of tumors. A smart probe Ce6-Leu@Mn2+ that consists of a glutathione (GSH) and leucine amino peptidase (LAP) dual-responsive unit, a 2-cyanobenzothiazole (CBT) group, and a Mn2+-chelated Ce6 as sonosensitizer for tumor SDT was synthesized, and its SDT potential for liver tumor HepG2 in living mice was systematically studied. It was found that the probes could self-assemble into large nanoparticles in physiological condition and spontaneously transformed into small particles under the dual stimulation of GSH and LAP in TME resulting in enhanced tumor accumulation and deep penetration. More notably, Ce6-Leu@Mn2+ could convert endogenous hydrogen peroxide to O2, thereby alleviating the hypoxia and achieving effective SDT against hypoxic tumors under the excitation of ultrasound. We thus believe this smart TME-responsive probe may provide a noninvasive and efficient means for malignant tumor treatment. STATEMENT OF SIGNIFICANCE: Sonodynamic therapy (SDT) is emerging as a promising therapeutic modality for cancer treatment. However, how to improve the tumor bioavailability and anti-hypoxia capability of sonosensitizers remains a huge challenge. Herein, we rationally developed a theranostic probe Ce6-Leu@Mn2+ that can transform into small-size nanoparticles from initial large particles under the dual stimulation of LAP and GSH in tumor microenvironment (TME) resulting in enhanced tumor accumulation, deep tissue penetration as well as remarkable O2 self-production for enhanced sonodynamic therapy of human liver HepG2 tumor in living mice. This smart TME-responsive probe may provide a noninvasive and efficient means for hypoxic tumor treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...