Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1041860, 2022.
Article in English | MEDLINE | ID: mdl-36532082

ABSTRACT

Accurate detection of SARS-CoV-2 neutralizing antibody (nAb) is critical for assessing the immunity levels after virus infection or vaccination. As fast, cost-effective alternatives to viral infection-based assays, competitive binding (CB) assays were developed to quantitate nAb by monitoring the ability of sera to inhibit the binding of viral spike (S) protein to the angiotensin converting enzyme 2 (ACE2) receptor. Herein, we established a bead-based flow cytometric CB assay and tested the detection performance of six combination models, i.e. immobilized ACE2 and soluble Fc-tagged S1 subunit of S protein (iACE2/S1-Fc), immobilized ACE2 and soluble Fc-tagged receptor binding domain (RBD) of S protein (iACE2/RBD-Fc), immobilized S1 and soluble Fc-tagged ACE2 (iS1/ACE2-Fc), immobilized S1 and soluble His-tagged ACE2 (iS1/ACE2-His), immobilized RBD and soluble Fc-tagged ACE2 (iRBD/ACE2-Fc), and immobilized RBD and soluble His-tagged ACE2 (iRBD/ACE2-His). Using SARS-CoV-2 monoclonal antibodies and sera of convalescent COVID-19 patients and vaccinated subjects, the combination models iACE2/RBD-Fc, iACE2/S1-Fc and iS1/ACE2-His were identified to be able to specifically detect SARS-CoV-2 nAb, among which iACE2/RBD-Fc model showed the highest sensitivity, superior to a commercial SARS-CoV-2 surrogate virus neutralization test (sVNT) ELISA kit. Further studies demonstrated that the sensitivity and specificity of CB assays were affected by the tag of ACE2, type of spike and method of measuring binding rate between ACE2 and spike. Moreover, the iACE2/RBD-Fc model showed good performance in detecting kinetic development of nAb against both the prototype SARS-CoV-2 strain and an omicron variant of SARS-CoV-2 in people immunized by an inactivated SARS-CoV-2 vaccine, and the results of iACE2/RBD-Fc model are correlated well with those of live virus-based and pseudovirus-based neutralization tests, demonstrating the potential to be developed into a highly sensitive, specific, versatile and high-throughput method for detecting SARS-CoV-2 nAb in clinical practice.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/metabolism , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19 Vaccines , Binding, Competitive , COVID-19/diagnosis , Antibodies, Viral
2.
Stem Cell Res ; 53: 102236, 2021 05.
Article in English | MEDLINE | ID: mdl-33813174

ABSTRACT

DIP2 protein contains three members: DIP2A, DIP2B and DIP2C, and are broadly expressed in the nervous system from Drosophila to human during embryonic development. Dip2c gene-associated mutations have been reported in tumors and neuronal diseases. However, the role ofDip2cin the context of mouse embryonic stem (mES) cells has not been explored.To investigate the biological function of Dip2c during early embryo development, we generated Dip2c-/- mES line using a CRISPR/Cas9 system. This cell line has contributed to further investigation of molecular mechanism of Dip2c during cell differentiation, as well as a cell model for screening for neurogenic drug and cancer clinical cure.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Cell Line , Female , Mice , Mice, Knockout , Pregnancy , Technology
3.
Stem Cell Res ; 45: 101778, 2020 05.
Article in English | MEDLINE | ID: mdl-32361465

ABSTRACT

DIP2A mutation is associated with abnormal brain development and diseases including dyslexia, autism and Alzheimer's disease. However, the role and the involved mechanisms remain unknown. To study the biological function of DIP2A during mESCs neural differentiation in early neural development, we generated a Dip2a homozygous knockout 46C ESC cell line using CRISPR/Cas9 genome editing technology. The eighth exon of Dip2a gene was replaced with PGK-Puro-P2A-mCherry. This 46C-Dip2a KO cell line offers a useful resource to investigate the molecular mechanisms of DIP2A in the process of cell fate determination, as well as a potential source of building disease mouse model.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Animals , CRISPR-Cas Systems/genetics , Cell Line , Gene Editing , Mice , Nuclear Proteins , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...