Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 33(11): 7902-7912, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37142868

ABSTRACT

OBJECTIVES: To develop radiomics signatures from multiparametric magnetic resonance imaging (MRI) scans to detect epidermal growth factor receptor (EGFR) mutations and predict the response to EGFR-tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM). METHODS: We included 230 NSCLC patients with BM treated at our hospital between January 2017 and December 2021 and 80 patients treated at another hospital between July 2014 and October 2021 to form the primary and external validation cohorts, respectively. All patients underwent contrast-enhanced T1-weighted (T1C) and T2-weighted (T2W) MRI, and radiomics features were extracted from both the tumor active area (TAA) and peritumoral edema area (POA) for each patient. The least absolute shrinkage and selection operator (LASSO) was used to identify the most predictive features. Radiomics signatures (RSs) were constructed using logistic regression analysis. RESULTS: For predicting the EGFR mutation status, the created RS-EGFR-TAA and RS-EGFR- POA showed similar performance. By combination of TAA and POA, the multi-region combined RS (RS-EGFR-Com) achieved the highest prediction performance, with AUCs of 0.896, 0.856, and 0.889 in the primary training, internal validation, and external validation cohort, respectively. For predicting response to EGFR-TKI, the multi-region combined RS (RS-TKI-Com) generated the highest AUCs in the primary training (AUC = 0.817), internal validation (AUC = 0.788), and external validation (AUC = 0.808) cohort, respectively. CONCLUSIONS: Our findings suggested values of multiregional radiomics of BM for predicting EGFR mutations and response to EGFR-TKI. CLINICAL RELEVANCE STATEMENT: The application of radiomic analysis of multiparametric brain MRI has proven to be a promising tool to stratify which patients can benefit from EGFR-TKI therapy and to facilitate the precise therapeutics of NSCLC patients with brain metastases. KEY POINTS: • Multiregional radiomics can improve efficacy in predicting therapeutic response to EGFR-TKI therapy in NSCLC patients with brain metastasis. • The tumor active area (TAA) and peritumoral edema area (POA) may hold complementary information related to the therapeutic response to EGFR-TKI. • The developed multi-region combined radiomics signature achieved the best predictive performance and may be considered as a potential tool for predicting response to EGFR-TKI.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , ErbB Receptors/genetics , Edema , Retrospective Studies , Magnetic Resonance Imaging
2.
J Magn Reson Imaging ; 58(6): 1838-1847, 2023 12.
Article in English | MEDLINE | ID: mdl-37144750

ABSTRACT

BACKGROUND: Preoperative assessment of epidermal growth factor receptor (EGFR) status, response to EGFR-tyrosine kinase inhibitors (TKI) and development of T790M mutation in non-small cell lung carcinoma (NSCLC) patients with brain metastases (BM) is important for clinical decision-making, while previous studies were only based on the whole BM. PURPOSE: To investigate values of brain-to-tumor interface (BTI) for determining the EGFR mutation, response to EGFR-TKI and T790M mutation. STUDY TYPE: Retrospective. POPULATION: Two hundred thirty patients from Hospital 1 (primary cohort) and 80 patients from Hospital 2 (external validation cohort) with BM and histological diagnosis of primary NSCLC, and with known EGFR status (biopsy) and T790M mutation status (gene sequencing). FIELD STRENGTH/SEQUENCE: Contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) fast spin echo sequences at 3.0T MRI. ASSESSMENT: Treatment response to EGFR-TKI therapy was determined by the Response Evaluation Criteria in Solid Tumors. Radiomics features were extracted from the 4 mm thickness BTI and selected by least shrinkage and selection operator regression. The selected BTI features and volume of peritumoral edema (VPE) were combined to construct models using logistic regression. STATISTICAL TESTS: The performance of each radiomics model was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS: A total of 7, 3, and 3 features were strongly associated with the EGFR mutation status, response to EGFR-TKI and T790M mutation status, respectively. The developed models combining BTI features and VPE can improve the performance than those based on BTI features alone, generating AUCs of 0.814, 0.730, and 0.774 for determining the EGFR mutation, response to EGFR-TKI and T790M mutation, respectively, in the external validation cohort. DATA CONCLUSION: BTI features and VPE were associated with the EGFR mutation status, response to EGFR-TKI and T790M mutation status in NSCLC patients with BM. EVIDENCE LEVEL: 3 Technical Efficacy: Stage 2.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Retrospective Studies , ErbB Receptors/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Magnetic Resonance Imaging , Brain/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...