Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732485

ABSTRACT

Estimating and monitoring chlorophyll content is a critical step in crop spectral image analysis. The quick, non-destructive assessment of chlorophyll content in rice leaves can optimize nitrogen fertilization, benefit the environment and economy, and improve rice production management and quality. In this research, spectral analysis of rice leaves is performed using hyperspectral and fluorescence spectroscopy for the detection of chlorophyll content in rice leaves. This study generated ninety experimental spectral datasets by collecting rice leaf samples from a farm in Sichuan Province, China. By implementing a feature extraction algorithm, this study compresses redundant spectral bands and subsequently constructs machine learning models to reveal latent correlations among the extracted features. The prediction capabilities of six feature extraction methods and four machine learning algorithms in two types of spectral data are examined, and an accurate method of predicting chlorophyll concentration in rice leaves was devised. The IVSO-IVISSA (Iteratively Variable Subset Optimization-Interval Variable Iterative Space Shrinkage Approach) quadratic feature combination approach, based on fluorescence spectrum data, has the best prediction performance among the CNN+LSTM (Convolutional Neural Network Long Short-Term Memory) algorithms, with corresponding RMSE-Train (Root Mean Squared Error), RMSE-Test, and RPD (Ratio of standard deviation of the validation set to standard error of prediction) indexes of 0.26, 0.29, and 2.64, respectively. We demonstrated in this study that hyperspectral and fluorescence spectroscopy, when analyzed with feature extraction and machine learning methods, provide a new avenue for rapid and non-destructive crop health monitoring, which is critical to the advancement of smart and precision agriculture.

2.
Biochem Biophys Res Commun ; 708: 149780, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38518725

ABSTRACT

Diverse animal models have been used to study postpancreatitis diabetes mellitus (PPDM) development; however, no study has yet conducted a comparative analysis of the specific differences in glucose homeostasis and islet injury between these models. Therefore, we investigated the differences in pancreatic islet injury and glucose homeostasis among diverse strains in a cerulein-induced acute pancreatitis (AP) model to determine the appropriate animal model for PPDM. BALB/cJ, C57BL/6J, C57BL/6 N, and FVB/NJ mice were administered cerulein to induce AP. Serum amylase levels, pancreatic acinar injury, blood glucose homeostasis, islet function, and islet injury were measured and analyzed. All strains exhibited elevated amylase secretion post pancreatitis, and BALB/cJ, C57BL/6J, and C57BL/6 N mice exhibited sex-related differences. All strains exhibited pancreatic acinar injury post pancreatitis but mostly recovered within 15 days. Overall, glucose homeostasis remained balanced post pancreatitis in all strains compared to that in the control groups, except in FVB/NJ male and female mice, which exhibited an imbalance in glucose homeostasis on day 7 post pancreatitis. All the strains, except BALB/cJ mice, exhibited a decline in Homeostasis model assessment-ß(HOMA-ß) values post pancreatitis, with significant decrease in C57BL/6J females and FVB/NJ males. Islet size decreased post pancreatitis in all strains, except BALB/cJ mice. Pancreatic islet insulin secretion levels significantly decreased in male FVB/NJ mice post pancreatitis onset and did not recover within 15 days. Therefore, FVB/NJ male mice are a useful model for studying PPDM.


Subject(s)
Pancreatitis , Mice , Male , Female , Animals , Pancreatitis/chemically induced , Ceruletide/toxicity , Acute Disease , Mice, Inbred C57BL , Mice, Inbred Strains , Blood Glucose , Homeostasis , Amylases
3.
J Control Release ; 363: 221-234, 2023 11.
Article in English | MEDLINE | ID: mdl-37717657

ABSTRACT

Checkpoint blockade immunotherapy (CBI) have exhibited remarkable benefits for cancer therapy. However, the low responsivity of CBI hinders its application in treatment of bladder cancer. Ferroptosis shows potential for increasing the responsivity of CBI by inducing immunogenic cell death (ICD) process. Herein, we developed a mitochondrial-targeted liposome loaded with brequinar (BQR) (BQR@MLipo) for enhancing the mitochondrial-related ferroptosis in bladder cancer in situ. It could be found that BQR@MLipo could selectively accumulate into mitochondria and inactivate dihydroorotate dehydrogenase (DHODH), which induced extensive mitochondrial lipid peroxidation and ROS, finally triggering ferroptosis of bladder cancer cells to boost the release of intracellular damage-associated molecular patterns (DAMPs) such as calreticulin (CRT), adenosine triphosphate (ATP), high mobility group box 1 (HMGB1). In addition, BQR@MLipo further promoted the release of mtDNA into the cytoplasm to activate the cGAS-STING pathway for the secretion of IFN-ß, which would increase the cross-presentation of antigens by dendritic cells and macrophage phagocytosis. Furthermore, the in vivo studies revealed that BQR@MLipo could remarkably accumulate into the bladder tumor and successfully initiate the infiltration of CD8+ T cells into tumor microenvironment for enabling efficient CBI to inhibit bladder tumor growth. Therefore, BQR@MLipo may represent a clinically promising modality for enhancing CBI in bladder tumor.


Subject(s)
Ferroptosis , Urinary Bladder Neoplasms , Humans , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Liposomes , Immunotherapy , Urinary Bladder Neoplasms/drug therapy , Mitochondria , Cell Line, Tumor , Tumor Microenvironment
4.
Microbiol Spectr ; : e0530422, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37750730

ABSTRACT

Hypervirulent Klebsiella pneumoniae with capsular polysaccharides (CPSs) causes severe nosocomial- and community-acquired infections. Phage-derived depolymerases can degrade CPSs from K. pneumoniae to attenuate bacterial virulence, but their antimicrobial mechanisms and clinical potential are not well understood. In the present study, Klebsiella phage GH-K3-derived depolymerase Depo32 (encoded by gene gp32) was identified to exhibit high efficiency in specifically degrading the CPSs of K2 serotype K. pneumoniae. The cryo-electron microscopy structure of trimeric Depo32 at a resolution up to 2.32 Å revealed potential catalytic centers in the cleft of each of the two adjacent subunits. K. pneumoniae subjected to Depo32 became more sensitive to phagocytosis by RAW264.7 cells and activated the cells by the mitogen-activated protein kinase signaling pathway. In addition, intranasal inoculation with Depo32 (a single dose of 200 µg, 20 µg daily for 3 days, or in combination with gentamicin) rescued all C57BL/6J mice infected with a lethal dose of K. pneumoniae K7 without interference from its neutralizing antibody. In summary, this work elaborates on the mechanism by which Depo32 targets the degradation of K2 serotype CPSs and its potential as an antivirulence agent. IMPORTANCE Depolymerases specific to more than 20 serotypes of Klebsiella spp. have been identified, but most studies only evaluated the single-dose treatment of depolymerases with relatively simple clinical evaluation indices and did not reveal the anti-infection mechanism of these depolymerases in depth. On the basis of determining the biological characteristics, the structure of Depo32 was analyzed by cryo-electron microscopy, and the potential active center was further identified. In addition, the effects of Depo32 on macrophage phagocytosis, signaling pathway activation, and serum killing were revealed, and the efficacy of the depolymerase (single treatment, multiple treatments, or in combination with gentamicin) against acute pneumonia caused by Klebsiella pneumoniae was evaluated. Moreover, the roles of the active sites of Depo32 were also elucidated in the in vitro and in vivo studies. Therefore, through structural biology, cell biology, and in vivo experiments, this study demonstrated the mechanism by which Depo32 targets K2 serotype K. pneumoniae infection.

5.
Sci Total Environ ; 896: 165340, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37414174

ABSTRACT

Marine microplastics (MPs) contamination has become an enormous hazard to aquatic creatures and human life. For MP identification, many Machine learning (ML) based approaches have been proposed using Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR). One major challenge for training MP identification models now is the imbalanced and inadequate samples in MP datasets, especially when these conditions are combined with copolymers and mixtures. To improve the ML performance in identifying MPs, data augmentation method is an effective approach. This work utilizes Explainable Artificial Intelligence (XAI) and Gaussian Mixture Models (GMM) to reveal the influence of FTIR spectral regions in identifying each type of MPs. Based on the identified regions, this work proposes a Fingerprint Region based Data Augmentation (FRDA) method to generate new FTIR data to supplement MP datasets. The evaluation results show that FRDA outperforms the existing spectral data augmentation approaches.

6.
J Orthop Sci ; 28(2): 468-475, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35063332

ABSTRACT

BACKGROUND: Protein tyrosine phosphatase non-receptor 12 (PTPN12) plays a prominent role in various cancers as a tumor suppressor. However, the expression of PTPN12 and its biological functions in osteosarcoma (OS) remains to be determined. METHODS: PTPN12 expression in OS was explored in public databases and detected by immunohistochemistry and Western blot. The cell viability was determined by Cell Counting Kit-8 (CCK-8) assay and colony formation. The cell migration and invasion were assessed by the Transwell assay. Flow cytometry analysis was applied to detect cell apoptosis and cell cycle distribution. To investigate the related mechanism, the levels of EGFR and downstream proteins were detected by Western blot. RESULTS: PTPN12 expression was significantly decreased in OS samples in GEO database and our hospital. OS cell lines in Cancer Cell Line Encyclopedia (CCLE) database and our cultured OS cells also demonstrated low PTPN12 expression. Lentivirus-induced overexpression of PTPN12 significantly inhibited the cell viability, migration and invasion of 143B and U2OS cells. The results of flow cytometry found that PTPN12 overexpression promoted cell apoptosis and induced cell cycle arrest at G1 phase in 143B and U2OS cells. The phosphorylation levels of EGFR and subsequent proteins of the PI3K/AKT and ERK pathways were inactivated as a result of PTPN12 overexpression in OS. CONCLUSION: PTPN12 plays a tumor suppressive role in OS cells. Restoring of PTPN12 activity may provide new insights for the treatment of this disease.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Phosphatidylinositol 3-Kinases/metabolism , Protein Tyrosine Phosphatases/metabolism , Apoptosis , Osteosarcoma/pathology , Bone Neoplasms/genetics , ErbB Receptors/metabolism , Cell Proliferation , Cell Movement , Gene Expression Regulation, Neoplastic , Protein Tyrosine Phosphatase, Non-Receptor Type 12/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 12/metabolism
7.
Sci Total Environ ; 859(Pt 2): 160304, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36427721

ABSTRACT

The growing prevalence of antibiotic-resistant pathogens has led to a better understanding of the underlying processes that lead to this expansion. Intensive pig farms are considered one of the hotspots for antibiotic resistance gene (ARG) transmission. Phages, as important mobile carriers of ARGs, are widespread in the animal intestine. However, our understanding of phage-associated ARGs in the pig intestine and their underlying drivers is limited. Here, metagenomic sequencing and analysis of viral DNA and total DNA of different intestinal (ileum, cecum and feces) contents in healthy piglets and piglets with diarrhea were separately conducted. We found that phages in piglet ceca are the main repository for ARGs and mobile genetic element (MGE) genes. Phage-associated MGEs are important factors affecting the maintenance and transfer of ARGs. Interestingly, the colocalization of ARGs and MGE genes in piglet gut phages does not appear to be randomly selected but rather related to a specific phage host (Streptococcus). In addition, in the feces of piglets with diarrhea, the abundance of phages carrying ARGs and MGE genes was significantly increased, as was the diversity of polyvalent phages (phages with broad host ranges), which would facilitate the transfection and wider distribution of ARGs in the bacterial community. Moreover, the predicted host spectrum of polyvalent phages in diarrheal feces tended to be potential enteropathogenic genera, which greatly increased the risk of enteropathogens acquiring ARGs. Notably, we also found ARG-homologous genes in the sequences of piglet intestinal mimiviruses, suggesting that the piglet intestinal mimiviruses are a potential repository of ARGs. In conclusion, this study greatly expands our knowledge of the piglet gut microbiome, revealing the underlying mechanisms of maintenance and dissemination of piglet gut ARGs and providing a reference for the prevention and control of ARG pollution in animal husbandry.


Subject(s)
Bacteriophages , Animals , Swine , Bacteriophages/genetics , Metagenomics , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Bacteria , Genes, Bacterial
8.
Huan Jing Ke Xue ; 43(8): 3934-3943, 2022 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-35971692

ABSTRACT

To investigate the ambient pollution caused by volatile organic compounds (VOCs) in a typical industrial city in summer, the characteristics and chemical reactivity from VOCs and the causes of ozone (O3) pollution were analyzed using online VOCs measurements during polluted and non-polluted periods in Zibo city in July 2020. The results showed that the average hourly concentration of total volatile organic compounds (TVOC) during the polluted period[(50.6±28.3)] µg·m-3 was 32.5% higher than that during the non-polluted period[(38.2±24.9) µg·m-3]. The contribution of all VOCs categories were as follows:alkanes>aromatics>alkenes>alkynes, and the diurnal averages of TVOC and O3 concentrations were opposite during the polluted and non-polluted period. Ozone formation potential (OFP),·OH radical loss rate (L·OH), and secondary organic aerosol formation potential (SOAp) during the polluted period were higher than those during the non-polluted period. Alkenes contributed most to OFP and L·OH, whereas aromatics contributed most to SOAp. The tendency of the diurnal average of OFP and SOAp was overall consistent with that of TVOC. The priority species of OFP, L·OH, and SOAp were alkenes and aromatics. The VOCs/NOx method was applied to identify the O3-VOC-NOx sensitivity during the polluted and non-polluted periods, and the results showed that the photochemical regimes were VOCs-limited and transition regions. In addition, the smog production model (SPM) was employed to identify the O3 formation regime, and the results showed that those during the polluted period were identified as VOCs-limited and transition regions from 08:00 to 16:00, whereas the non-polluted period was mainly considered to be VOCs-limited. To mitigate the O3 pollution in summertime, the synergistic control of VOCs (especially alkenes and aromatics) and NOx emissions should be enforced.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Alkenes , China , Environmental Monitoring , Ozone/analysis , Volatile Organic Compounds/analysis
9.
Front Microbiol ; 13: 944495, 2022.
Article in English | MEDLINE | ID: mdl-35875536

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the common causes of human colitis. In the present study, two lytic phages vB_SenS-EnJE1 and vB_SenS-EnJE6 were isolated and the therapeutic effect of the combination of phages and faecal microbiota transplantation (FMT) on S. Typhimurium-induced mouse colitis was investigated. The characteristics and genome analysis indicated that they are suitable phages for phage therapy. Results showed that vB_SenS-EnJE1 lysis 41/54 Salmonella strains of serotype O4, and vB_SenS-EnJE6 lysis 46/54 Salmonella strains of serotypes O4 and O9. Severe inflammatory symptoms and disruption of the intestinal barrier were observed in S. Typhimurium -induced colitis. Interestingly, compared with a single phage cocktail (Pc) or single FMT, the combination of Pc and FMT (PcFMT) completely removed S. Typhimurium after 72 h of treatment, and significantly improved pathological damage and restored the intestinal barrier. Furthermore, PcFMT effectively restored the intestinal microbial diversity, especially for Firmicutes/Bacteroidetes [predominantly bacterial phyla responsible for the production of short-chain fatty acids (SCFA)]. Additionally, we found that PcFMT treatment significantly increased the levels of SCFA. All these data indicated that the combination of phages and FMT possesses excellent therapeutic effects on S. Typhimurium -induced intestinal microbiota disorder diseases. Pc and FMT played roles in "eliminating pathogens" and "strengthening vital qi," respectively. This study provides a new idea for the treatment of intestinal microbiota disorder diseases caused by specific bacterial infections.

10.
Food Funct ; 13(16): 8509-8523, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35876802

ABSTRACT

Salmonella enterica serovar Typhimurium (S. typhimurium) is one of the most important foodborne pathogens that causes colitis in humans. In this study, we compared the effects of a therapeutic treatment using a phage cocktail (Pc) in combination or not with Lactobacillus reuteri (L. reuteri) in an S. typhimurium-induced colitis murine model. An oral administration of 4 × 108 CFU per mouse of S. typhimurium resulted in intestinal barrier disruption and severe inflammatory symptoms. S. typhimurium in the colon of the mice treated with the Pc and L. reuteri (PcLR) combination were completely removed compared to those in the single Pc or single L. reuteri treatment groups. Furthermore, compared with the infected group, the intestinal barrier and colonic pathological damage were significantly improved in the PcLR-treated group. Additionally, the short-chain fatty acid (SCFA) levels in the feces of the mice in the PcLR treatment group were significantly increased compared to those in the feces of the mice in the infected group. In addition, the combination of Pc with acetate and reuterin released by L. reuteri (PcReAc) can also achieve the same effect as PcLR treatment. Thus, these results indicated that the acetate and reuterin released by L. reuteri play an important role in the treatment. The extraordinary therapeutic effects of PcLR and PcReAc depend on the specific bactericidal activity of Pc and the broad-spectrum bactericidal activity and immunomodulation of L. reuteri (or acetate and reuterin) in the host. This study provides a new concept for the treatment of inflammatory diseases caused by intestinal pathogens.


Subject(s)
Bacteriophages , Colitis , Limosilactobacillus reuteri , Probiotics , Animals , Colitis/chemically induced , Colitis/therapy , Humans , Intestines , Mice , Probiotics/therapeutic use , Salmonella typhimurium
11.
Huan Jing Ke Xue ; 43(3): 1286-1295, 2022 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-35258192

ABSTRACT

To study the differences in volatile organic compound (VOCs) pollution characteristics between an urban site and a background site in summer, ambient VOCs were monitored using an online gas chromatograph (GC) at an urban site and a background site (Mt. Lu) in Zibo in July 2020. The VOCs pollution characteristics and chemical reactivity were analyzed, and the sources of VOCs were identified using the positive matrix factorization model(PMF). The results showed that ρ(TVOC) and ρ(NOx) were higher at the urban site, but ρ(O3) was higher at the background site. Diurnal average characteristics of ρ(TVOC) and ρ(NOx) were high at night and low during the day at the urban site, and there were no obvious variation characteristics at the background site. The diurnal average characteristics of ρ(O3) were consistent at the urban and background sites, showing low level at night and high level during the day; however, the peak in the background site was later than that at the urban site. The average ρ(TVOC) at the urban site and background site were (44.9±27.5) µg·m-3 and (17.3±9.1) µg·m-3, respectively, and the mass fraction of each component was ordered as alkanes>aromatics>alkenes>alkynes in both sites. The average ozone formation potentials(OFP)were (115.5±63.1) µg·m-3 and (38.0±20.2) µg·m-3, and the contribution of each component was ordered as alkenes>aromatics>alkanes>alkynes. The respective average values of·OH radical loss rate(L·OH) were (3.9±2.3) s-1 and (1.0±0.6) s-1, with the highest contribution of alkenes and the lowest contribution of alkynes in both sites. The average values of secondary organic aerosol formation potential(SOAp) were (0.5±0.3) µg·m-3 and (0.2±0.06) µg·m-3, respectively, with aromatic being the most abundant group. According to the source appointment by the PMF model, the main source of VOCs in the urban site was traffic sources (52.4%), followed by petroleum evaporation (19.2%), solvent evaporation (17.3%), and oil and biological sources (11.1%). The source of VOCs in the background site mainly came from traffic sources (40.2%), followed by solvent evaporation (31.3%), combustion sources (19.3%), and biological sources (9.2%). Zibo City should strengthen the management and control of motor vehicle emissions, petroleum evaporation, and the use of industrial solvents.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring/methods , Ozone/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
12.
Front Immunol ; 12: 781466, 2021.
Article in English | MEDLINE | ID: mdl-34868055

ABSTRACT

Immunogenic cell death (ICD) has been classified as a form of regulated cell death (RCD) that is sufficient to activate an adaptive immune response. Accumulating evidence has demonstrated the ability of ICD to reshape the tumor immune microenvironment through the emission of danger signals or DAMPs, which may contribute to the immunotherapy. Currently, identification of ICD-associated biomarkers that stratify patients according to their benefit from ICD immunotherapy would be of great advantage. Here, we identified two ICD-associated subtypes by consensus clustering. ICD-high subtype was associated with the favorable clinical outcomes, abundant immune cell infiltration, and high activity of immune response signaling. Besides, we established and validated an ICD-related prognostic model that predicted the survival of HNSCC and was associated with tumor immune microenvironment. In conclusion, we established a new classification system of HNSCC based on ICD signatures. This stratification had significant clinical outcomes for estimating prognosis, as well as the immunotherapy of HNSCC patients.


Subject(s)
Biomarkers, Tumor , Immunogenic Cell Death , Squamous Cell Carcinoma of Head and Neck/etiology , Squamous Cell Carcinoma of Head and Neck/mortality , Computational Biology/methods , DNA Mutational Analysis , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Immunogenic Cell Death/genetics , Immunohistochemistry , Mutation , Prognosis , Squamous Cell Carcinoma of Head and Neck/diagnosis , Squamous Cell Carcinoma of Head and Neck/therapy , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
13.
Front Cell Dev Biol ; 9: 696878, 2021.
Article in English | MEDLINE | ID: mdl-34336848

ABSTRACT

Accumulating evidence has supported that osteosarcoma is heterogeneous, and several subtypes have been identified based on genomic profiling. Immunotherapy is revolutionizing cancer treatment and is a promising therapeutic strategy. In contrast, few studies have identified osteosarcoma classification based on immune biosignatures, which offer the optimal stratification of individuals befitting immunotherapy. Here, we classified osteosarcoma into two clusters: immunity high and immunity low using the single-sample gene-set enrichment analysis and unsupervised hierarchical clustering. Immunity_H subtype was associated with high immune cells infiltration, a favorable prognosis, benefit to immunotherapy, high human leukocyte antigen gene expression, and activated immune signal pathway indicating an immune-hot phenotype. On the contrary, the Immunity_L subtype was correlated with low immune cell infiltration, poor prognosis, and cancer-related pathway, indicating an immune-cold phenotype. We also identified TYROBP as a key immunoregulatory gene associated with CD8+ T cell infiltration by multiplex immunohistochemistry. Finally, we established an immune-related prognostic model that predicted the survival time of osteosarcoma. In conclusion, we established a new classification system of osteosarcoma based on immune signatures and identified TYROBP as a key immunoregulatory gene. This stratification had significant clinical outcomes for estimating prognosis, as well as the immunotherapy of osteosarcoma patients.

14.
Oncol Lett ; 21(3): 217, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33613706

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant tumor of bone. It is a common phenomenon that osteosarcoma cells have a hypoxic microenvironment. Hypoxia can dedifferentiate cells of several malignant tumor types into stem cell-like phenotypes. However, the role of hypoxia in stemness induction and the expression of cancer stem cell (CSC) markers in human osteosarcoma cells has not been reported. The present study examined the effects of hypoxia on stem-like cells in the human osteosarcoma MNNG/HOS cells. Under the incubation with 1% oxygen, the expression of CSCs markers (Oct-4, Nanog and CD133) in MNNG/HOS cells were increased. Moreover, MNNG/HOS cells cultured under hypoxic conditions were more likely to proliferate into spheres and resulted in larger xenograft tumor. Hypoxia also increased the mRNA and protein levels of hypoxia-inducible factor (HIF)-1α. Then rapamycin was used, which has been shown to lower HIF-1α protein level, to inhibit the hypoxic response. Rapamycin suppressed the expression of HIF-1α protein and CSCs markers (Oct4, Nanog and CD133) in MNNG/HOS cells. In addition, pretreatment with rapamycin reduced the efficiency of MNNG/HOS cells in forming spheres and xenograft tumors. The results demonstrated that hypoxia (1% oxygen) can dedifferentiate some of the MNNG/HOS cells into stem cell-like phenotypes, and that the mTOR signaling pathway participates in this process via regulating the expression of HIF-1α protein.

15.
Front Vet Sci ; 7: 588, 2020.
Article in English | MEDLINE | ID: mdl-33005648

ABSTRACT

Bovine mastitis, an inflammatory disease that occurs frequently in early lactation or the dry period, is primarily caused by bacterial infections. There is growing evidence that Aerococcus viridans (A. viridans) is becoming an important cause of bovine mastitis. The treatment of bovine mastitis is primarily based on antibiotics, which not only leads to a large economic burden but also the development of antibiotic resistance. On the other hand, bacteriophages present a promising alternative treatment strategy. The object of this study was to evaluate the potential of a previously isolated A. viridans phage vB_AviM_AVP (AVP) as an anti-mastitis agent in an experimental A. viridans-induced murine mastitis model. A. viridans N14 was isolated from the milk of clinical bovine mastitis and used to establish a mastitis model in mice. We demonstrated that administration of phage AVP significantly reduced colony formation by A. viridans and alleviated damage to breast tissue. In addition, reduced inflammation was indicated by decreased levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) and myeloperoxidase (MPO) activity in the phage-treated group compared to those in the phosphate buffered saline (PBS)-treated group. To the best of our knowledge, this report is the first to show the potential use of phages as a treatment for A. viridans-induced mastitis.

16.
Appl Environ Microbiol ; 86(22)2020 10 28.
Article in English | MEDLINE | ID: mdl-32887718

ABSTRACT

Salmonella enterica subsp. enterica serovar Abortusequi is a frequently reported pathogen causing abortion in mares. In this study, the preventive and therapeutic effects of phage PIZ SAE-01E2 against S Abortusequi in a mouse model of abortion were investigated. Phage PIZ SAE-01E2 was stable at different temperatures (4 to 70°C) and pH values (pH 4 to 10) and could lyse the majority of the Salmonella serogroup O:4 and O:9 strains tested (25/28). There was no lysogeny-related, toxin, or antibiotic resistance-related gene in the genome of PIZ SAE-01E2. All of these characteristics indicate that PIZ SAE-01E2 has the potential for use in phage therapy. In in vivo experiments, 2 × 103 CFU/mouse of S Abortusequi ATCC 9842 was sufficient to lead to murine abortion (gestational day 14.5) within 48 h. A single intraperitoneal inoculation of PIZ SAE-01E2 (108 PFU/mouse, multiplicity of infection = 105) 1 h before or after S Abortusequi challenge provided effective protection to all pregnant mice (10/10). After 24 h of treatment with phage PIZ SAE-01E2, the bacterial loads in both the placenta and the uterus of the infected mice were significantly decreased (<102 CFU/g) compared to those in the placenta and the uterus of the mice in the control group (>106 CFU/g). In addition, the levels of inflammatory cytokines in the placenta and blood of the mice in the phage administration groups were significantly reduced (P < 0.05) compared to those in the placenta and blood of the mice in the control group. Altogether, these findings indicate that PIZ SAE-01E2 shows the potential to block abortions induced by S Abortusequi in vivoIMPORTANCES Abortusequi is an important pathogen that can induce abortions in mares. Although S Abortusequi has been well controlled in Europe and the United States due to strict breeding and health policies, it is still widespread in African and Asian countries and has proven difficult to control. In China, abortions caused by S Abortusequi have also been reported in donkeys. So far, there is no commercial vaccine. Thus, exploiting alternative efficient and safe strategies to control S Abortusequi infection is essential. In this study, a new lytic phage, PIZ SAE-01E2, infecting S Abortusequi was isolated, and the characteristics of PIZ SAE-01E2 indicated that it has the potential for use in phage therapy. A single intraperitoneal inoculation of PIZ SAE-01E2 before or after S Abortusequi challenge provided effective protection to all pregnant mice. Thus, PIZ SAE-01E2 showed the potential to block abortions induced by S Abortusequi in vivo.


Subject(s)
Abortion, Veterinary/prevention & control , Bacteriophages/physiology , Horse Diseases/prevention & control , Salmonella Infections, Animal/prevention & control , Salmonella/physiology , Abortion, Veterinary/microbiology , Abortion, Veterinary/virology , Animals , Female , Horse Diseases/microbiology , Horse Diseases/virology , Horses , Mice , Mice, Inbred ICR , Pregnancy , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/virology
17.
Front Microbiol ; 11: 351, 2020.
Article in English | MEDLINE | ID: mdl-32210942

ABSTRACT

Yersinia enterocolitica is generally considered an important food-borne pathogen worldwide, especially in the European Union. A lytic Yersinia phage X1 (Viruses; dsDNA viruses, no RNA stage; Caudovirales; and Myoviridae) was isolated. Phage X1 showed a broad host range and could effectively lyse 27/51 Y. enterocolitica strains covering various serotypes that cause yersiniosis in humans and animals (such as serotype O3 and serotype O8). The genome of this phage was sequenced and analyzed. No toxin, antibiotic-resistance or lysogeny related modules were found in the genome of phage X1. Studies of phage stability confirmed that X1 had a high tolerance toward a broad range of temperatures (4-60°C) and pH values (4-11) for 1 h. The ability to resist harsh acidic conditions and enzymatic degradation in vitro demonstrated that phage X1 is suitable for oral administration, and in particular, that this phage can pass the stomach barrier and efficiently reach the intestine in vivo without losing infectious ability. The potential of this phage against Y. enterocolitica infection in vitro was studied. In animal experiments, a single oral administration of phage X1 at 6 h post infection was sufficient to eliminate Y. enterocolitica in 33.3% of mice (15/45). In addition, the number of Y. enterocolitica strains in the mice was also dramatically reduced to approximately 103 CFU/g after 18 h compared with 107 CFU/g in the mice without phage treatment. Treatment with phage X1 showed significant improvement by intestinal histopathologic observations. Moreover, proinflammatory cytokine levels (IL-6, TNF-α, and IL-1ß) were significantly reduced (P < 0.05). These results indicate that phage X1 is a promising candidate to control infection by Y. enterocolitica in vivo.

18.
Huan Jing Ke Xue ; 40(6): 2526-2532, 2019 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-31854642

ABSTRACT

In view of the insufficient source profiles for emissions from nonmetal mineral products manufacturing processes in China, a dilution sampling system was used to collect PM10 and PM2.5 samples from glassmaking, ceramics, and firebrick manufacturing sources between February and June of 2017. The characteristics of 50 chemical components in the samples were studied to identify source profiles. The results showed that the dominant composition of particulate matter in glassmaking plant profiles was Na, with percentages ranging from 9.2% to 18.5%. Ceramics profiles were enriched in Al, Si, Ca, and Fe, with percentages ranging from 1.7% to 8.7%. Refractory brick and shale manufacturing process profiles were characterized by high abundances of SO42- (36.9%-48.1%) and NH4+ (7.7%-17.0%). Chemical components in the source profiles varied with the different fuel types and desulfurization, denitrification, and dedusting methods. The coefficients of divergence (CD) between PM2.5 and PM10 from the same process were similar except for the results from the shale manufacturing process (CD values>0.3), thus indicating that the elements profiles of PM2.5 might be similar to those in PM10. Profiles of the same particle size from different processes were significantly different from one another, with CD values ranging from 0.42 to 0.76. The CD values for float glass and medicinal glass, and the CD values for the two ceramic enterprises were relatively small. The distributions of weighted differences (R/U ratios) were used to compare the differences of components between the source profiles, and results showed that the identified components for glass manufacturing, ceramic manufacturing, fireproof bricks, and page rock bricks were Na and As, Al and Ti, NO3- and NH4+, and SO42- and NH4+, respectively.

19.
Virus Genes ; 55(5): 696-706, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31254238

ABSTRACT

Bacteriophages have been recently revisited as an alternative biocontrol tool due to the limitations of antibiotic treatment. In this study, we reported on the biological characteristics and genomic information of vB_KpnS_GH-K3 (abbreviated as GH-K3), a Klebsiella phage of the Siphoviridae family, which was previously isolated from a hospital sewage system. One-step growth curve analysis indicated that the burst size of GH-K3 was 291 PFU/cell. GH-K3 maintained a stable titer in a broad range of pH values (6-10) and temperature (up to 50 °C). Based on bioinformatics analysis, GH-K3 comprises of 49,427 bp containing a total of 77 open reading frames (ORFs), which share high degree of nucleotide similarity and close evolutionary relationships with at least 12 other Klebsiella phages. Of note, GH-K3 gp32 was identified as a unique ORF. The major segment of gp32 sequence at the C-terminus (residues 351-907) was found highly variable as determined by its mismatch with the nucleotide and protein sequences available at NCBI database. Furthermore, HHpred analysis indicated that GH-K3 gp32 contains three domains (PDB ID: 5W6S_A, 3GQ8_A and 1BHE_A) similar to depolymerase (depoKP36) of Klebsiella phage KP36 suggestive of a potential depolymerase activity during host receptor-binding in the processes of phage infection. Altogether, the current data revealed a novel putative depolymerase-like protein which is most likely to play an important role in phage-host interaction.


Subject(s)
Bacteriophages/growth & development , Klebsiella/virology , Bacteriophages/drug effects , Bacteriophages/genetics , Bacteriophages/radiation effects , Genome, Viral , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Microbial Viability/radiation effects , Open Reading Frames , Sequence Homology , Synteny , Temperature , Viral Load , Viral Proteins/genetics
20.
Front Microbiol ; 10: 1189, 2019.
Article in English | MEDLINE | ID: mdl-31191500

ABSTRACT

Klebsiella pneumoniae (K. pneumoniae) spp. are important nosocomial and community-acquired opportunistic pathogens, which cause various infections. We observed that K. pneumoniae strain K7 abruptly mutates to rough-type phage-resistant phenotype upon treatment with phage GH-K3. In the present study, the rough-type phage-resistant mutant named K7RR showed much lower virulence than K7. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis indicated that WcaJ and two undefined glycosyltransferases (GTs)- named GT-1, GT-2- were found to be down-regulated drastically in K7RR as compared to K7 strain. GT-1, GT-2, and wcaJ are all located in the gene cluster of capsular polysaccharide (CPS). Upon deletion, even of single component, of GT-1, GT-2, and wcaJ resulted clearly in significant decline of CPS synthesis with concomitant development of GH-K3 resistance and decline of virulence of K. pneumoniae, indicating that all these three GTs are more likely involved in maintenance of phage sensitivity and bacterial virulence. Additionally, K7RR and GT-deficient strains were found sensitive to endocytosis of macrophages. Mitogen-activated protein kinase (MAPK) signaling pathway of macrophages was significantly activated by K7RR and GT-deficient strains comparing with that of K7. Interestingly, in the presence of macromolecular CPS residues (>250 KD), K7(ΔGT-1) and K7(ΔwcaJ) could still be bounded by GH-K3, though with a modest adsorption efficiency, and showed minor virulence, suggesting that the CPS residues accumulated upon deletion of GT-1 or wcaJ did retain phage binding sites as well maintain mild virulence. In brief, our study defines, for the first time, the potential roles of GT-1, GT-2, and WcaJ in K. pneumoniae in bacterial virulence and generation of rough-type mutation under the pressure of bacteriophage.

SELECTION OF CITATIONS
SEARCH DETAIL
...