Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 803
Filter
1.
Phys Chem Chem Phys ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842138

ABSTRACT

A SERS substrate with high sensitivity and reusability was proposed. The chip consists of multiple ZnO microcavities loaded with silver particles. Based on structural characteristics, this coupling between cavity modes and localized surface plasmon modes can highly localize the electric field, where experimental results revealed a detection limit of 10-11 M for R6G. In addition, during carrier control in semiconductors with localized electromagnetic fields, our substrate also exhibits high self-cleaning efficiency and in situ detection stability. Even in a dry environment, it exhibits excellent light-mediated cleaning ability across multiple reuse test cycles. The convenient, rinse-free substrate, with its cost-effective and sustainable features, shows great promise for the study on detection and degradation of active materials.

2.
Int Immunopharmacol ; 136: 112410, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38843641

ABSTRACT

Impaired wound healing in diabetes results from a complex interplay of factors that disrupt epithelialization and wound closure. MG53, a tripartite motif (TRIM) family protein, plays a key role in repairing cell membrane damage and facilitating tissue regeneration. In this study, bone marrow-derived mesenchymal stem cells (BMSCs) were transduced with lentiviral vectors overexpressing MG53 to investigate their efficacy in diabetic wound healing. Using a db/db mouse wound model, we observed that BMSCs-MG53 significantly enhanced diabetic wound healing. This improvement was associated with marked increase in re-epithelialization and vascularization. BMSCs-MG53 promoted recruitment and survival of BMSCs, as evidenced by an increase in MG53/Ki67-positive BMSCs and their improved response to scratch wounding. The combination therapy also promoted angiogenesis in diabetic wound tissues by upregulating the expression of angiogenic growth factors. MG53 overexpression accelerated the differentiation of BMSCs into endothelial cells, manifested as the formation of mature vascular network structure and a remarkable increase in DiI-Ac-LDL uptake. Our mechanistic investigation revealed that MG53 binds to caveolin-3 (CAV3) and subsequently increases phosphorylation of eNOS, thereby activating eNOS/NO signaling. Notably, CAV3 knockdown reversed the promoting effects of MG53 on BMSCs endothelial differentiation. Overall, our findings support the notion that MG53 binds to CAV3, activates eNOS/NO signaling pathway, and accelerates the therapeutic effect of BMSCs in the context of diabetic wound healing. These insights hold promise for the development of innovative strategies for treating diabetic-related impairments in wound healing.

3.
Exp Hematol Oncol ; 13(1): 48, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725070

ABSTRACT

BACKGROUND: Cancer is the leading cause of death among older adults. Although the integration of immunotherapy has revolutionized the therapeutic landscape of cancer, the complex interactions between age and immunotherapy efficacy remain incompletely defined. Here, we aimed to elucidate the relationship between aging and immunotherapy resistance. METHODS: Flow cytometry was performed to evaluate the infiltration of immune cells in the tumor microenvironment (TME). In vivo T cell proliferation, cytotoxicity and migration assays were performed to evaluate the antitumor capacity of tumor antigen-specific CD8+ T cells in mice. Real-time quantitative PCR (qPCR) was used to investigate the expression of IFN-γ-associated gene and natural killer (NK)-associated chemokine. Adoptive NK cell transfer was adopted to evaluate the effects of NK cells from young mice in overcoming the immunotherapy resistance of aged mice. RESULTS: We found that elderly patients with advanced non-small cell lung cancer (aNSCLC) aged ≥ 75 years exhibited poorer progression-free survival (PFS), overall survival (OS) and a lower clinical response rate after immunotherapy. Mechanistically, we showed that the infiltration of NK cells was significantly reduced in aged mice compared to younger mice. Furthermore, the aged NK cells could also suppress the activation of tumor antigen-specific CD8+ T cells by inhibiting the recruitment and activation of CD103+ dendritic cells (DCs). Adoptive transfer of NK cells from young mice to aged mice promoted TME remodeling, and reversed immunotherapy resistance. CONCLUSION: Our findings revealed the decreased sensitivity of elderly patients to immunotherapy, as well as in aged mice. This may be attributed to the reduction of NK cells in aged mice, which inhibits CD103+ DCs recruitment and its CD86 expression and ultimately leads to immunotherapy resistance.

4.
Chem Sci ; 15(20): 7586-7595, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784730

ABSTRACT

Fabricating three dimensional (3D) supramolecular frameworks (SMFs) into stable crystalline nanosheets remains a great challenge due to the homogeneous and weak inter-building block interactions along 3D directions. Herein, crystalline nanosheets of a 3D SMF with a uniform thickness of 4.8 ± 0.1 nm immobilized with Pt nanocrystals on the surface (Q[8]/Pt NSs) were fabricated via the solid-liquid reaction between cucurbit[8]uril/H2PtCl6 single crystals and hydrazine hydrate with the help of gas and heat yielded during the reaction process. A series of experiments and theoretical calculations reveal the ultrahigh stability of Q[8]/Pt NSs due to the high density hydrogen bonding interaction among neighboring Q[8] molecules. This in turn endows Q[8]/Pt NSs with excellent photocatalytic and continuous thermocatalytic CO oxidation performance, representing the thus-far reported best Pt nano-material-based catalysts.

5.
bioRxiv ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38746129

ABSTRACT

The actin filament (F-actin) bundling protein fascin-1 is highly enriched in many metastatic cancers. Fascin's contribution to metastasis have been ascribed to its enhancement of cell migration and invasion. However, mouse genetic studies clearly point to functions also in tumorigenesis, yet without mechanistic underpinnings. Here, we show that fascin expression promotes the formation of a non-canonical signaling complex that enables anchorage-independent proliferation. This complex shares similarities to focal adhesions and we refer to them as pseudo-adhesion signaling scaffolds (PASS). PASS are enriched with tyrosine phosphorylated proteins and require fascin's F-actin-bundling activity for its assembly. PASS serve as hubs for the Rac1/PAK/JNK proliferation signaling axis, driven by PASS-associated Rac-specific GEFs. Experimental disruption of either fascin or RacGEF function abrogates sustained proliferation of aggressive cancers in vitro and in vivo . These results add a new molecular element to the growing arsenal of metabolic and oncogenic signaling programs regulated by the cytoskeleton architecture.

6.
J Multidiscip Healthc ; 17: 2105-2120, 2024.
Article in English | MEDLINE | ID: mdl-38736544

ABSTRACT

Purpose: With the rapid development of immunotherapy, cancer treatment has entered a new phase. Medical imaging, as a primary diagnostic method, is closely related to cancer immunotherapy. However, until now, there has been no systematic bibliometric analysis of the state of this field. Therefore, the main purpose of this article is to clarify the past research trajectory, summarize current research hotspots, reveal dynamic scientific developments, and explore future research directions. Patients and Methods: A comprehensive search was conducted on the Web of Science Core Collection (WoSCC) database to identify publications related to immunotherapy specifically for the medical imaging of carcinoma. The search spanned the period from the year 2003 to 2023. Several analytical tools were employed. These included CiteSpace (6.2.4), and the Microsoft Office Excel (2016). Results: By searching the database, a total of 704 English articles published between 2003 and 2023 were obtained. We have observed a rapid increase in the number of publications since 2018. The two most active countries are the United States (n=265) and China (n=170). Pittock, Sean J and Abu-sbeih, Hamzah are very concerned about the relationship between cancer immunotherapy and medical images and have published more academic papers (n = 5; n = 4). Among the top 10 co-cited authors, Topalian Sl (n=43) cited ranked first, followed by Graus F (n=40) cited. According to clustering, timeline, and burst word analysis, the results show that the current research focus is on "MRI", "deep learning", "tumor microenvironment" and so on. Conclusion: Medical imaging and cancer immunotherapy are hot topics. The United States is the country with the most publications and the greatest influence in this field, followed by China. "MRI", "PET/PET-CT", "deep learning", "immune-related adverse events" and "tumor microenvironment" are currently hot research topics and potential targets.

7.
Ther Apher Dial ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751182

ABSTRACT

INTRODUCTION: Therapeutic plasma exchange (TPE), an effective method to eliminate harmful soluble mediators associated with tissue injury, serves as a crucial intervention for systemic rheumatologic diseases (SRDs). However, its value in critically ill SRDs remains uncertain. This retrospective study aims to evaluate the efficacy of TPE in SRDs. METHODS: Critically ill SRD patients admitted to the department of intensive care unit of a large tertiary hospital receiving TPE from January 2011 to December 2019 were included. RESULTS: A total of 91 critically ill SRD patients received TPE were enrolled. Their mean age was 47.67 ± 16.35 years with a female predominance (n = 68). Significant decrease in SOFA score post-TPE treatment was observed (p < 0.05). There were no TPE-related fatalities. Improvement was observed in 64 (70.32%) patients. CONCLUSION: This study shows favorable clinical outcomes. TPE may be an acceptable treatment option for critically ill SRD patients.

9.
Heliyon ; 10(10): e30986, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778944

ABSTRACT

Gastric cancer (GC) with high morbidity and mortality is one major cause of tumor-related death. Mechanisms underlying GC invasion and metastasis remain unclear. IGFBP7 exerted variable effects in different cancers and its role in GC is controversial. Here, IGFBP7 was found to be upregulated and elevated IGFBP7 expression represented a poorer overall survival in GC using bioinformatics analysis. Moreover, IGFBP7 was up-regulated in human GC specimens and promoted tumor growth in xenograft tumor animals. For GC cell lines, we found that IGFBP7 was also upregulated and facilitated the cell malignant behavior and EMT of GC cells, which may involve NF-κB and ERK signaling pathways. This research may provide new avenues for GC therapy.

10.
PLoS Pathog ; 20(5): e1012228, 2024 May.
Article in English | MEDLINE | ID: mdl-38739679

ABSTRACT

The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.


Subject(s)
Animal Shells , Lipid Metabolism , Penaeidae , White spot syndrome virus 1 , Animals , Penaeidae/virology , Penaeidae/metabolism , Animal Shells/metabolism , Animal Shells/virology , White spot syndrome virus 1/physiology , Lipid Metabolism/physiology , Host-Pathogen Interactions , Lipogenesis/physiology
11.
Sci Total Environ ; 934: 173095, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38729370

ABSTRACT

Deep dewatering of Waste Activated Sludge (WAS) through mechanical processes remains inefficient, primarily due to the formation of a stable hydrogen bonding network between the biopolymers and water, which consequently leads to significant water trapped by Extracellular Polymeric Substances (EPS). In this study, a novel and recyclable treatment for WAS based on Ionic Liquids (ILs) was established, named IL-biphasic aqueous system (IL-ABS) treatment. Specifically, the IL-ABS formed in WAS facilitated rapid and efficient in-situ deep dewatering while concurrently recovering hydroxyapatite. The water content decreased from an initial 98.27 % to 65.35 % with IL-ABS, formed by 1-Butyl-3-methylimidazolium bromide (BmimBr) and K3PO4 synthesized from waste H3PO4. Moreover, the recycled BmimBr maintaining the water content of the dewatered sludge consistently between 65.61 % and 67.25 % across five cycles, exhibited remarkable reproducibility. Through three-dimensional excitation-emission matrix, lactate dehydrogenase analyses and confocal laser scanning microscopy, the high concentration of BmimBr in the upper phase effectively disrupted the cells and EPS, which exposed protein and polysaccharide on the EPS surface. Subsequently, the K3PO4 in the lower phase led to an enhanced salting-out effect in WAS. Furthermore, FT-IR analysis revealed that K3PO4 disrupted the original hydrogen bonds between EPS and water. Then, BmimBr formed numerous hydrogen bonds with the sludge flocs, leading to deep dewatering and agglomeration of the sludge flocs during the unique phase separation process of IL-ABS. Notably, sludge-derived hydroxyapatite product exhibited remarkable adsorption capacity for prevalent heavy metal contaminants such as Pb2+, Cd2+ and Cu2+, with efficiencies comparable to those of commercial hydroxyapatite, thereby achieving the resource utilization of waste H3PO4. Moreover, economic calculations demonstrated the suitability of this novel treatment. This innovative treatment exhibits potential for practical applications in the non-mechanical deep dewatering of WAS.

12.
ACS Appl Mater Interfaces ; 16(20): 26234-26244, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38711193

ABSTRACT

The huge volume expansion/contraction of silicon (Si) during the lithium (Li) insertion/extraction process, which can lead to cracking and pulverization, poses a substantial impediment to its practical implementation in lithium-ion batteries (LIBs). The development of low-strain Si-based composite materials is imperative to address the challenges associated with Si anodes. In this study, we have engineered a TiSi2 interface on the surface of Si particles via a high-temperature calcination process, followed by the introduction of an outermost carbon (C) shell, leading to the construction of a low-strain and highly stable Si@TiSi2@NC composite. The robust TiSi2 interface not only enhances electrical and ionic transport but also, more critically, significantly mitigates particle cracking by restraining the stress/strain induced by volumetric variations, thus alleviating pulverization during the lithiation/delithiation process. As a result, the as-fabricated Si@TiSi2@NC electrode exhibits a high initial reversible capacity (2172.7 mAh g-1 at 0.2 A g-1), superior rate performance (1198.4 mAh g-1 at 2.0 A g-1), and excellent long-term cycling stability (847.0 mAh g-1 after 1000 cycles at 2.0 A g-1). Upon pairing with LiNi0.6Co0.2Mn0.2O2 (NCM622), the assembled Si@TiSi2@NC||NCM622 pouch-type full cell exhibits exceptional cycling stability, retaining 90.1% of its capacity after 160 cycles at 0.5 C.

13.
Phytochemistry ; 223: 114122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710376

ABSTRACT

Quantitative analysis of Rumex nepalensis var. remotiflorus revealed that its roots contain rich anthraquinones, which has emodin, chrysophanol, and physcion contents of up to 0.30, 0.67, and 0.98 mg/g, respectively. Further phytochemical study led to the isolation and purification of seven undescribed phenolic constituents, including one flavan derivative with a 13-membered ring, polygorumin A (1), two dianthrone glucosides, polygonumnolides F and G (2, 3), two diphenylmethanones, rumepalens A and B (4, 5), and a pair of epimeric oxanthrone C-glucosides, rumejaposides K and L (6a, 6b) from the roots of R. nepalensis var. remotiflorus. Furthermore, 1 undescribed natural product, 1-ß-D-glucoside-6'-[(2E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate]-3-hydroxy-5-methylphenyl (19), and 21 known phenolic compounds were obtained from the aforementioned plant for the first time. Their structures were elucidated through extensive spectroscopic data analysis. Notably, compounds 1, 4-5, and 7-9 exhibited inhibitory activity on α-glucosidase with IC50 values ranging from 1.61 ± 0.17 to 32.41 ± 0.87 µM. In addition, the isolated dianthrone, chrysophanol bianthrone (14), showed obvious cytotoxicity against four human cancer cell lines (HL-60, SMMC-7721, A-549, and MDA-MB-231) with IC50 values ranging from 3.81 ± 0.17 to 35.15 ± 2.24 µM. In silico target prediction and molecular docking studies demonstrated that the mechanism of the anticancer activity of 14 may be related to the interaction with protein kinase CK2.


Subject(s)
Antineoplastic Agents, Phytogenic , Glycoside Hydrolase Inhibitors , Phenols , Rumex , alpha-Glucosidases , Humans , Phenols/pharmacology , Phenols/chemistry , Phenols/isolation & purification , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Rumex/chemistry , alpha-Glucosidases/metabolism , alpha-Glucosidases/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Structure , Drug Screening Assays, Antitumor , Molecular Docking Simulation , Structure-Activity Relationship , Cell Line, Tumor , Plant Roots/chemistry , Dose-Response Relationship, Drug , Cell Proliferation/drug effects
14.
Bioorg Chem ; 148: 107434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744168

ABSTRACT

Azaphilones represent a particular group of fascinating pigments from fungal source, with easier industrialization and lower cost than the traditional plant-derived pigments, and they also display a wide range of pharmacological activities. Herein, 28 azaphilone analogs, including 12 new ones, were obtained from the fermentation culture of a marine fungus Penicillium sclerotium UJNMF 0503. Their structures were elucidated by MS, NMR and ECD analyses, together with NMR and ECD calculations and biogenetic considerations. Among them, compounds 1 and 2 feature an unusual natural benzo[d][1,3]dioxepine ring embedded with an orthoformate unit, while 3 and 4 represent the first azaphilone examples incorporating a novel rearranged 5/6 bicyclic core and a tetrahydropyran ring on the side chain, respectively. Our bioassays revealed that half of the isolates exhibited neuroprotective potential against H2O2-induced injury on RSC96 cells, while compound 13 displayed the best rescuing capacity toward the cell viability by blocking cellular apoptosis, which was likely achieved by upregulating the PI3K/Akt signaling pathway.


Subject(s)
Apoptosis , Benzopyrans , Dose-Response Relationship, Drug , Hydrogen Peroxide , Neuroprotective Agents , Penicillium , Phosphatidylinositol 3-Kinases , Pigments, Biological , Proto-Oncogene Proteins c-akt , Apoptosis/drug effects , Penicillium/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/isolation & purification , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Phosphatidylinositol 3-Kinases/metabolism , Pigments, Biological/pharmacology , Pigments, Biological/chemistry , Pigments, Biological/isolation & purification , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/antagonists & inhibitors , Molecular Structure , Benzopyrans/pharmacology , Benzopyrans/chemistry , Benzopyrans/isolation & purification , Structure-Activity Relationship , Animals , Cell Survival/drug effects , Rats , Signal Transduction/drug effects
15.
Materials (Basel) ; 17(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38730827

ABSTRACT

In order to address the challenges of resource utilization posed by construction waste, the substitution of natural aggregate (NA) with public fill (PF) contents was investigated for load reclamation and road grassroots applications. A comprehensive assessment of road performance for the recycled mixture was conducted, focusing on parameters such as unconfined compressive strength, splitting strength, compressive resilience modulus, dry shrinkage, and frost resistance. Additionally, the impact of incorporating PF at various types and replacement ratios on the microstructure of cement-stabilized aggregate (CSA) was analyzed. The results indicated that the unconfined compressive strength of cement-stabilized recycled mixture with varying PF contents meets the base strength requirements for heavy, medium, and light traffic pavement on secondary and sub-secondary roads in China. Notably, the unconfined compressive strength and resilience modulus follow a similar pattern, reaching their peak at a 25% PF content. Microscopic examination reveals that an appropriate PF content leads to the predominant formation of C(N)-A-S-H, hydrotalcite, Ca(OH)2, and CaCO3 as paste reaction products. As the replacement of public fill increases from 0% to 25%, there is a gradual stacking of gel products, which enhances the compactness of the microstructure by cementing together unreacted particles. Consequently, this process reduces dry shrinkage strain and effectively mitigates the formation of reflection cracks. Applying large quantities of public fill to road construction can effectively deal with various waste accumulation problems and produce a novel road material with significant social, economic, and environmental benefits.

16.
Drug Des Devel Ther ; 18: 919-929, 2024.
Article in English | MEDLINE | ID: mdl-38560523

ABSTRACT

Background: Magnesium sulfate, an intravenous adjuvant, has recently attracted immense attention in multimodal analgesia. Previous studies confirmed the crucial role of magnesium sulfate in postoperative pain and nociceptive hypersensitivity. However, the effect of magnesium sulfate in multimodal analgesia on the quality of recovery (QoR) for elderly patients has not been thoroughly studied. Therefore, the present experiment aimed to investigate the effect of continuous intravenous magnesium sulfate on the quality of postoperative recovery in elderly patients undergoing total knee arthroplasty (TKA). Patients and Methods: In this study, a total of 148 patients scheduled to undergo unilateral total knee arthroplasty were randomized into a magnesium sulfate group (Group M, n=68) and a control group (Group C, n=66) using a double-blind, randomized controlled trial. Before induction of anesthesia, Group M received intravenous magnesium sulfate (40 mg/kg) for 15 min, followed by a continuous infusion (15 mg/kg) until the end of the procedure. In the same manner, Group C received an infusion of the same amount of isotonic saline using the same method as the Group M. Results: Compared with Group C, Group M had significantly better QoR-15 scores on postoperative day 1(POD1) than Group C (P <0.05). Analysis of the dimensions of QoR-15 scores indicated that Group M exhibited notably reduced levels of pain, and higher levels of emotional state and physical comfort than Group C (P <0.05). Furthermore, Group C had significantly higher numerical rating scale (NRS) scores at POD1 than Group M (P <0.05). Conclusion: For elderly patients undergoing knee arthroplasty, magnesium sulfate can be used as an adjuvant in a multimodal analgesic regimen to reduce early postoperative pain and improve the quality of early postoperative recovery.


Subject(s)
Arthroplasty, Replacement, Knee , Magnesium Sulfate , Humans , Aged , Magnesium Sulfate/therapeutic use , Prospective Studies , Analgesics , Pain, Postoperative/drug therapy , Double-Blind Method , Analgesics, Opioid
17.
PeerJ ; 12: e17090, 2024.
Article in English | MEDLINE | ID: mdl-38563007

ABSTRACT

Background: Appearance anxiety and depression have become common and global public health problems worldwide, especially among adolescents. However, few studies have revealed the mechanisms between them. This study aimed to explore the multiple mediating roles of interpersonal sensitivity and social support between appearance anxiety and depression among medical college students. Methods: With 13 invalid samples excluded, 724 college students participated in our survey and completed questionnaires. The average age of 724 samples was 19.8 ± 2.02 including freshman to senior year and graduate school and above; 31.9% of the participants were male and 68.1% were female. SPSS 25.0 and Hayes' PROCESS macro were used for statistical description, correlation analysis and built multiple mediation models. Results: Appearance anxiety can not only directly affect depression, but also indirectly affect depression through three significant mediating pathways: (1) IS (B = 0.106, 95% CI [0.082-0.132]), which accounted for 49.77% of the total effect, (2) SS (B = 0.018, 95% CI [0.008-0.031]), which accounted for 8.45% of the total effect, and (3) IS and SS (B = 0.008, 95% CI [0.003-0.014]), which accounted for 3.76% of the total effect. And the total mediating effect was 61.97%. Limitations: It is a cross-sectional research method and the causal relationship is unclear. Conclusions: This study found that lower interpersonal sensitivity and higher social support can effectively reduce depression caused by appearance anxiety among college students. The schools and relevant departments should take measures to reduce the interpersonal sensitivity of college students and establish reliable social support, so as to reduce the occurrence of depression.


Subject(s)
Depression , Students, Medical , Adolescent , Humans , Male , Female , Depression/epidemiology , Universities , Cross-Sectional Studies , Anxiety/epidemiology
18.
Front Neurosci ; 18: 1341109, 2024.
Article in English | MEDLINE | ID: mdl-38595972

ABSTRACT

Amyotrophic lateral sclerosis is a fatal, multigenic, multifactorial neurodegenerative disease characterized by upper and lower motor neuron loss. Animal models are essential for investigating pathogenesis and reflecting clinical manifestations, particularly in developing reasonable prevention and therapeutic methods for human diseases. Over the decades, researchers have established a host of different animal models in order to dissect amyotrophic lateral sclerosis (ALS), such as yeast, worms, flies, zebrafish, mice, rats, pigs, dogs, and more recently, non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms of motor neuron degeneration in ALS, contributing to the development of new promising therapeutics. In this review, we describe several common animal models in ALS, classified by the naturally occurring and experimentally induced, pointing out their features in modeling, the onset and progression of the pathology, and their specific pathological hallmarks. Moreover, we highlight the pros and cons aimed at helping the researcher select the most appropriate among those common experimental animal models when designing a preclinical ALS study.

19.
J Toxicol Environ Health A ; 87(10): 436-447, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38557424

ABSTRACT

One of the main pathological features noted in Alzheimer's disease (AD) is the presence of plagues of aggregated ß-amyloid (Aß1-42)-peptides. Excess deposition of amyloid-ß oligomers (AßO) are known to promote neuroinflammation. Sequentially, following neuroinflammation astrocytes become activated with cellular characteristics to initiate activated astrocytes. The purpose of this study was to determine whether total flavonoids derived from Dracocephalum moldavica L. (TFDM) inhibited Aß1-42-induced damage attributed to activated C8-D1A astrocytes. Western blotting and ELISA were used to determine the expression of glial fibrillary acidic protein (GFAP), and complement C3 to establish the activation status of astrocytes following induction from exposure to Aß1-42. Data demonstrated that stimulation of C8-D1A astrocytes by treatment with 40 µM Aß1-42 for 24 hr produced significant elevation in protein expression and protein levels of acidic protein (GFAP) and complement C3 accompanied by increased expression and levels of inflammatory cytokines. Treatment with TFDM or the clinically employed drug donepezil in AD therapy reduced production of inflammatory cytokines, and toxicity initiated following activation of C8-D1A astrocytes following exposure to Aß1-42. Therefore, TFDM similar to donepezil inhibited inflammatory secretion in reactive astrocytes, suggesting that TFDM may be considered as a potential compound to be utilized in AD therapy.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Lamiaceae , Humans , Amyloid beta-Peptides/pharmacology , Alzheimer Disease/drug therapy , Flavonoids/pharmacology , Complement C3/metabolism , Complement C3/pharmacology , Complement C3/therapeutic use , Neuroinflammatory Diseases , Astrocytes/metabolism , Donepezil/metabolism , Donepezil/pharmacology , Donepezil/therapeutic use , Cytokines/metabolism , Peptide Fragments/metabolism , Peptide Fragments/toxicity
20.
J Toxicol Environ Health A ; 87(11): 471-479, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38590254

ABSTRACT

Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aß). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.


Subject(s)
Alzheimer Disease , Cannabidiol , Cognitive Dysfunction , Mice , Animals , Alzheimer Disease/drug therapy , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Brain-Gut Axis , Cognition , Cognitive Dysfunction/drug therapy , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...