Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res A ; 68(3): 411-22, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-14762920

ABSTRACT

In this study, the biocompatibility of the electrically conductive polymer polypyrrole (PPy) with nerve tissue was evaluated in vitro and in vivo. The extraction solution of PPy powder, which was synthesized chemically, was tested for acute toxicity, subacute toxicity, pyretogen, quantitative measure of cell viability, hemolysis, allergen, and micronuclei. The PPy membrane was synthesized electrochemically on the indium tin oxide conductive borosilicate glass. The dorsal root ganglia from 1-3-day-old Sprague-Dawley rats were cultured above PPy membrane and observed by light or scanning electron microscopy. The PPy-silicone tube (PPy membrane on the inner surface of the silicone tube) also synthesized electrochemically was used to bridge across 10-mm sciatic nerve gap in rats. Twenty-four weeks after the operation to rats, the regenerated tissues were observed by electrophysiological and histological techniques. PPy extraction solution showed no evidence of acute and subacute toxicity, pyretogen, hemolysis, allergen, and mutagenesis, and the Schwann cells from the PPy extraction solution group showed better survival rate and proliferation rate as compared with the saline solution control group. The migration of the Schwann cells and the neurite extension from dorsal root ganglia on the surface of PPy membrane-coated glass was better than those of bare glass. There was only lightly inflammation during 6 months of the postoperation, when the PPy-silicone tube bridged across the gap of the transected sciatic nerve. The regeneration of nerve tissue in the PPy-silicone tube was slightly better than that in the plain silicone tube by means of electrophysiological and histological examination. The results of this study indicate that PPy has a good biocompatibility with rat peripheral nerve tissue and that PPy might be a candidate material for bridging the peripheral nerve gap.


Subject(s)
Biocompatible Materials/pharmacology , Ganglia, Spinal/drug effects , Nerve Regeneration/drug effects , Polymers/pharmacology , Pyrroles/pharmacology , Animals , Biocompatible Materials/standards , Cell Division/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Electrophysiology , Materials Testing , Neurites/drug effects , Peripheral Nervous System , Polymers/standards , Pyrroles/standards , Rats , Rats, Sprague-Dawley , Schwann Cells/cytology , Schwann Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...