Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Genes Dev ; 29(7): 760-71, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25838544

ABSTRACT

Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5' intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5' intron finds the 3' introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5' intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing.


Subject(s)
Drosophila/genetics , RNA Splicing/genetics , RNA, Small Nuclear/genetics , Trans-Splicing/genetics , Amino Acid Motifs , Animals , Conserved Sequence/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Gene Expression Regulation, Developmental , Introns/genetics , RNA-Binding Proteins/genetics
2.
Insect Biochem Mol Biol ; 44: 1-11, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24239545

ABSTRACT

Doublesex (dsx) is a downstream key regulator in insect sex determination pathway. In Drosophila, alternative splicing of Dm-dsx gene is sex-specifically regulated by transformer (tra), in which the functional TRA promotes female-specific Dm-dsx. However, the sex determination pathway in Lepidoptera is not well understood; here we focused on alternative splicing of doublesex (dsx) in two agricultural pests, Asian corn borer (Ostrinia furnacalis) and cotton bollworm (Helicoverpa armigera), as well as the silkworm (Bombyx mori). More than a dozen new alternative splicing isoforms of dsx were found in the Lepidopteran females, which exist in all tested developmental stages and differentiated tissues. Alignment of mRNA and protein sequences of doublesex revealed high conservation of this gene in Lepidoptera. Strength analysis of splice sites revealed a weak 5' splice site at intron 3 in Lepidopteran dsx, which was experimentally confirmed. Furthermore, we identified highly conserved RNA sequences in the Lepidopteran dsx, including RNA elements I (14 nt), II (11 nt), III (26 nt), IV (17 nt), 3E-1 (8 nt) and 3E-2 (8 nt). The RNA elements III and IV were previously found in exon 4 of B. mori dsx and bound with Bm-PSI, which suppressed the inclusion of exons 3 & 4 into the male-specific Bm-dsx. Then we identified and analyzed the homologous genes of Bm-psi in the two Lepidopteran pests, which expressed at similar levels and exhibited a unique isoform in the males and females from each Lepidoptera. Importantly, mutagenesis of Bm-dsx mini-genes and their expression in BmN cell line demonstrated that three RNA elements are involved in the female-specific alternative splicing of Bm-dsx. Mutations in the RNA cis-elements 3E-1 and 3E-2 resulted in decreased inclusion of exon 3 into the female-specific dsx mRNA, suggesting that these two elements would be exonic splicing enhancers that facilitate the recognition of the weak 5' splice site at intron 3 of Lepidopteran dsx. We propose that the 5' splice sites at intron 3 are weak, resulting in multiple alternative splicing events in intron 3 of female Lepidoptera dsx. Activation of the 5' splice site requires regulatory cis-elements in exons 3 for female-specific splicing of Lepidoptera dsx.


Subject(s)
Alternative Splicing , Bombyx/genetics , Insect Proteins/genetics , Moths/genetics , Regulatory Sequences, Nucleic Acid , Animals , Base Sequence , Bombyx/chemistry , Bombyx/metabolism , Conserved Sequence , Exons , Female , Gene Expression Regulation , Insect Proteins/chemistry , Insect Proteins/metabolism , Introns , Male , Molecular Sequence Data , Moths/chemistry , Moths/metabolism , RNA Splice Sites , Species Specificity
3.
Nucleic Acids Res ; 41(8): 4660-70, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23462954

ABSTRACT

Fidelity and efficiency of pre-mRNA splicing are critical for generating functional mRNAs, but how such accuracy in 5' splice site (SS) selection is attained is not fully clear. Through a series of yeast genetic screens, we isolated alleles of prp28 that improve splicing of suboptimal 5'SS substrates, demonstrating that WT-Prp28p proofreads, and consequently rejects, poor 5'SS. Prp28p is thought to facilitate the disruption of 5'SS-U1 snRNA pairing to allow for 5'SS-U6 snRNA pairing in the catalytic spliceosome; unexpectedly, 5'SS proofreading by Prp28p is dependent on competition with the stability of the 5'SS:U6 duplex, but not the 5'SS:U1 duplex. E404K, the strongest prp28 allele containing a mutation located in the linker region between adenosine triphosphatase (ATPase) subdomains, exhibited lower RNA-binding activity and enhanced splicing of suboptimal substrates before first-step catalysis, suggesting that decreased Prp28p activity allows longer time for suboptimal 5'SS substrates to pair with U6 snRNA and thereby reduces splicing fidelity. Residue E404 is critical for providing high splicing activity, demonstrated here in both yeast and Drosophila cells. Thus, the subdomain linker in Prp28p plays important roles both in splicing efficiency across species and in proofreading of 5'SS.


Subject(s)
DEAD-box RNA Helicases/genetics , RNA Splice Sites , RNA Splicing , Saccharomyces cerevisiae Proteins/genetics , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Alleles , Animals , Cell Line , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/metabolism , Drosophila/genetics , Mutation , RNA, Small Nuclear/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
4.
RNA ; 18(7): 1395-407, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22627775

ABSTRACT

Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. We identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is expressed sex-specifically in silkworm gonads. Trans-splicing of mod(mdg4) in silkworm was experimentally confirmed. We identified integrations from a common 5'-gene with 46 newly identified alternative 3'-exons that are located on both DNA strands over a 500-kb region. Other trans-splicing events in B. mori were predicted by bioinformatic analysis, in which 12 events were confirmed by RT-PCR, six events were further validated by chimeric SNPs, and two events were confirmed by allele-specific RT-PCR in F(1) hybrids from distinct silkworm lines of JS and L10, indicating that trans-splicing is more widespread in insects than previously thought. Analysis of the B. mori transcriptome by RNA-seq provides valuable information of regulatory alternative splicing events. The conservation of splicing events across species and newly identified trans-splicing events suggest that B. mori is a good model for future studies.


Subject(s)
Alternative Splicing , Bombyx/genetics , Trans-Splicing , Transcriptome , Amino Acid Sequence , Animals , Base Sequence , Exons , Female , Introns , Male , Models, Genetic , Molecular Sequence Data , Polymorphism, Single Nucleotide , Sequence Homology, Amino Acid
5.
Yi Chuan ; 32(1): 54-8, 2010 Jan.
Article in Chinese | MEDLINE | ID: mdl-20085886

ABSTRACT

The non-lepis wing of silkworm (Bombyx mori) is controlled by the recessive gene, nlw. Owning to lack of crossing over in females, the reciprocal backcrossed F(1) (BC(1)) progenies were used for linkage analysis and mapping of nlw based on the SSR linkage map and STS markers using the wild type (+(nlw)/+(nlw)) silkworm strain P50 and U06 with scaleless wing (nlw/nlw). The nlw gene was linked to eight SSR markers and one STS marker. All the individuals with the wild type in the BC1F (Using F(1) as female to backcross to the recessive parent, that is (U06xP50)xU06) showed heterozygous profile of (U06xP50) F(1), and the ones with non-lepis wing in BC1F exhibited the homozygous profile of the strain U06. Using a reciprocal BC1M (Using F1 as male to backcross to the recessive parent, that is U06x(U06xP50))cross, we constructed a linkage map of 125.6 cM, and the distance between nlw and the nearest marker cash2p was 11.4 cM.


Subject(s)
Bombyx/genetics , Genetic Markers , Insect Proteins/genetics , Repetitive Sequences, Nucleic Acid , Wings, Animal , Animals , Bombyx/growth & development , Chromosome Mapping , Female , Humans , Inbreeding , Male , Wings, Animal/growth & development
6.
Genomics ; 94(2): 138-45, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19389468

ABSTRACT

We investigated variations in the gene expression of Bombyx mori following infection with a nucleopolyhedrovirus (BmNPV). Two B. mori strains, KN and 306, which are highly resistant and susceptible to BmNPV infection, respectively, were used in this study. The infection profiles of BmNPV in the B. mori KN and 306 larvae revealed that the virus invaded the midguts of both these strains. However, its proliferation was notably inhibited in the midgut of the resistant strain. By using the suppression subtractive hybridization method, two cDNA libraries were constructed in order to compare the BmNPV responsive gene expressions between the two silkworm lines. In total, 62 differentially expressed genes were obtained. Real-time qPCR analysis confirmed that eight genes were significantly up-regulated in the midgut of the KN strain following BmNPV infection. Our results imply that these up-regulated genes may be involved in the B. mori immune response against BmNPV infection.


Subject(s)
Bombyx/genetics , Bombyx/virology , Genetic Variation , Nucleopolyhedroviruses/genetics , Transcription, Genetic , Animals , Base Sequence , Bombyx/ultrastructure , DNA, Complementary/genetics , DNA, Complementary/isolation & purification , Gene Expression Profiling , Gene Expression Regulation , Larva/ultrastructure , Larva/virology , Microscopy, Electron, Transmission , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...