Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Bioorg Med Chem Lett ; : 129890, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004317

ABSTRACT

This study reports the design, synthesis, and comprehensive biological evaluation of 13 benzodioxolane derivatives, derived from the core structure of piperine, a natural product with established antitumor properties. Piperine, primarily found in black pepper, has been noted for its diverse pharmacological activities, including anti-inflammatory, antioxidant, and anticancer effects. Leveraging piperine's antitumor potential, we aimed to enhance its efficacy through structural modifications. Among the synthesized compounds, HJ1 emerged as the most potent, exhibiting a 4-fold and 10-fold increase in inhibitory effects on HeLa and MDA-MB-231 cell lines, respectively, compared to piperine. Furthermore, HJ1 demonstrated a favorable safety profile, characterized by significantly lower cytotoxicity towards the human normal cell line 293T. Mechanistic investigations revealed that HJ1 markedly inhibited clonogenicity, migration, and adhesion of HeLa cells. In vivo studies utilizing the chick embryo chorioallantoic membrane (CAM) model substantiated the robust antitumor activity of HJ1, evidenced by its ability to suppress tumor angiogenesis and reduce tumor weight. These results suggest that HJ1 holds significant promise as a lead compound for the development of novel antitumor therapies.

2.
Fitoterapia ; : 106118, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977252

ABSTRACT

A series of piperine derivatives were designed and successfully synthesized. The antitumor activities of these compounds against 293 T human normal cells, as well as MDA-MB-231 (breast) and Hela (cervical) cancer cell lines, were assessed through the MTT assay. Notably, compound H7 exhibited moderate activity, displaying reduced toxicity towards non-tumor 293 T cells while potently enhancing the antiproliferative effects in Hela and MDA-MB-231 cells. The IC50 values were determined to be 147.45 ±â€¯6.05 µM, 11.86 ±â€¯0.32 µM, and 10.50 ±â€¯3.74 µM for the respective cell lines. In subsequent mechanistic investigations, compound H7 demonstrated a dose-dependent inhibition of clone formation, migration, and adhesion in Hela cells. At a concentration of 15 µM, its inhibitory effect on Hela cell function surpassed that of both piperine and 5-Fu. Furthermore, compound H7 exhibited promising antitumor activity in vivo, as evidenced by significant inhibition of tumor angiogenesis and reduction in tumor weight in a chicken embryo model. These findings provide a valuable scientific foundation for the development of novel and efficacious antitumor agents, particularly highlighting the potential of compound H7 as a therapeutic candidate for cervical cancer and breast cancer.

3.
ACS Omega ; 9(24): 26673-26682, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911792

ABSTRACT

At present, there are many works on the influences of partially hydrolyzed polyacrylamide (HPAM) and surfactant on the stability and treatment of O/W emulsion produced by surfactant-polymer (SP) flooding. However, there are few related reports on the effects of HPAM and surfactant on the demulsification of W/O crude oil emulsion produced by SP flooding. Especially, there is no report on the effect of the surfactant type. In this paper, sodium dodecyl sulfate (SDS), octylphenol polyoxyethylene ether (OP-10), and alkyl C16-18 hydroxypropyl sulfobetaine (HSB1618) were selected as representatives of the anionic surfactant, nonionic surfactant, and zwitterionic surfactant, respectively. Demulsification experiments and interface behavior experiments were conducted to investigate their influences on the demulsification performance of a demulsifier D1. The results showed that the order of the negative effect of the surfactant type on dehydration speed and the dehydration rate of D1 was HPAM + OP-10 > HPAM + HSB1618 > HPAM + SDS. There is no difference in the effect of three surfactants on the conformation adjustment of D1 at the W/O interface, but the properties of the composite W/O interface formed by them and D1 were different. The coalescence time was longest when there were HPAM and OP-10 in water, while the lg(G 1'/G demulsifier')/lgG 1' was the smallest, which led to the most difficult demulsification of W/O emulsion. This work can guide surfactant selection during SP flooding from the perspective of produced fluid treatment.

4.
ACS Omega ; 9(24): 26195-26204, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38911770

ABSTRACT

In this work, the empirical relationship among three apparent parameters in the hydrophilic-lipophilic deviation (HLD) equation was studied to provide help in using the HLD equation to design a block polyether water clarifier for treating produced water in an oilfield. Ten block polyethers (including six linear polyethers and four branched polyethers) were prepared, and their HLD equations were measured. By curve fitting, the empirical relationship among apparent hydrophobicity characteristic (K), apparent characteristic curvature (Cc n ), and apparent temperature coefficient (c t) of block polyether were obtained: K = 9.32c t, Cc n = 18e-24.5K (for linear polyether), and Cc n = 3.7e-20.8K (for branched polyether). By introducing these relationships into the HLD equation and combining an empirical relationship between propylene oxide/ethylene oxide (mole ratio) in a block polyether and K/Ccn, a new block polyether was designed to treat the produced water. The treatment result confirmed the reliability of these empirical relationships. The results expand the practical application of HLD theory and are useful for the development of a block polyether water clarifier.

5.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740744

ABSTRACT

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Subject(s)
Forkhead Transcription Factors , Ovarian Neoplasms , Receptor Protein-Tyrosine Kinases , Wnt Signaling Pathway , Animals , Female , Humans , Mice , beta Catenin/metabolism , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Cell Proliferation , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics
6.
Heliyon ; 10(7): e28440, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689964

ABSTRACT

Introduction: Mitochondrial fission process 1 (MTFP1) is an inner mitochondrial membrane (IMM) protein implicated in the development and progression of various tumors, particularly lung squamous cell carcinoma (LUSC). This study aims to provide a more theoretical basis for the treatment of LUSC. Methods: Through bioinformatics analysis, MTFP1 was identified as a novel target gene of HIF1A. MTFP1 expression in LUSC was examined using The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Proteomics Data Commons (PDC) databases. The Kaplan-Meier plotter (KM plotter) database was utilized to evaluate its correlation with patient survival. Western blot and chromatin immunoprecipitation (ChIP) assays were employed to confirm the regulatory relationship between MTFP1 and HIF1A. Additionally, cell proliferation, colony formation, and migration assays were conducted to investigate the mechanism by which MTFP1 enhances LUSC cell proliferation and metastasis. Results: Our findings revealed that MTFP1 overexpression correlated with poor prognosis in LUSC patients(P < 0.05). Moreover, MTFP1 was closely associated with hypoxia and glycolysis in LUSC (R = 0.203; P < 0.001, R = 0.391; P < 0.001). HIF1A was identified as a positive regulator of MTFP1. Functional enrichment analysis demonstrated that MTFP1 played a role in controlling LUSC cell proliferation. Cell proliferation, colony formation, and migration assays indicated that MTFP1 promoted LUSC cell proliferation and metastasis by activating the glycolytic pathway (P < 0.05). Conclusions: This study establishes MTFP1 as a novel HIF1A target gene that promotes LUSC growth by activating the glycolytic pathway. Investigating MTFP1 may contribute to the development of effective therapies for LUSC patients, particularly those lacking targeted oncogene therapies.

7.
RSC Adv ; 14(12): 8124-8134, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38464688

ABSTRACT

Cationic polyacrylates exhibit both reverse demulsification and flotation performance, which can avoid incompatibility between the reverse demulsifier and flotation agent during treatment of produced water from offshore oilfields. In our previous work, the effect of the structure of the cationic unit on the reverse demulsification and flotation performance of cationic polyacrylates was studied. However, the structure-activity relationship of cationic polyacrylates has not been systematically studied. In this study, the relationships between the structure (acrylate type, tertiary amine type, mass ratio of acrylate to tertiary amine, and degree of cationicity), interfacial properties (surface tension, interfacial tension, zeta potential, interfacial elastic modulus, interaction force between oil droplets, and film drainage time of an oil-covered bubble), and reverse demulsification and flotation performance of cationic polyacrylates were investigated. A reduction in the elastic modulus of the oil-water interface was the key factor for good reverse demulsification performance, whereas a decrease in the film drainage time of an oil-covered bubble was the key factor for good flotation performance. Ethyl acrylate (EA) was superior to methyl acrylate (MA), and dimethylaminopropyl methacrylamide (DPM) was superior to dimethylaminoethyl methacrylate (DEM). Increases in the mass ratio of ethyl acrylate to dimethylaminopropyl methacrylamide and the degree of cationicity were beneficial for reducing the elastic modulus of the oil-water interface and the film drainage time of an oil-covered bubble. This is the first time that the structure-property-performance relationship of cationic polyacrylates has been systematically studied. A cationic polyacrylate that exhibited both good reverse demulsification performance and good flotation performance is recommended.

8.
Ying Yong Sheng Tai Xue Bao ; 35(2): 431-438, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523101

ABSTRACT

We investigated the effects of exogenous melatonin on the osmotic regulation and antioxidant capacity of 4-year-old Ginkgo biloba seedlings under salt stress. There were three treatments, with low (50 mmol·L-1), medium (100 mmol·L-1), and high (200 mmol·L-1) NaCl stress. Leaves were sprayed and the soil was watered with melatonin solution (0, 0.02, 0.1, 0.5 mmol·L-1). The results showed that saline stress significantly inhibited the osmoregulation and antioxidant capacities of G. biloba seedlings. Application of exogenous melatonin at appropriate concentrations (0.02, 0.1 mmol·L-1) under salt stress could promote plant growth, reduce the rate of electrolyte leakage, decrease the content of flavonoids and malonic dialdehyde, and enhance peroxidase and superoxide dismutase activities in leaves. High concentration (0.5 mmol·L-1) of exogenous melatonin would aggravate the oxidative and osmotic stresses. The 0.02 and 0.1 mmol·L-1 exogenous melatonin alleviated osmotic stress and oxidative stress in G. biloba seedlings under salt stress, while the 0.02 mmol·L-1 exogenous melatonin treatment had the best effect on NaCl stress alleviation. Ground diameter, branch width, branch length, electrolyte leakage rate, superoxide dismutase activity, and flavonoids content could be used as the key indices for rapid identification of the degree of salt stress in G. biloba seedlings.


Subject(s)
Antioxidants , Melatonin , Melatonin/pharmacology , Seedlings , Ginkgo biloba , Sodium Chloride/pharmacology , Salt Tolerance , Salt Stress , Electrolytes/pharmacology , Superoxide Dismutase , Flavonoids/pharmacology
9.
J Am Chem Soc ; 146(9): 6231-6239, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38386884

ABSTRACT

Acquiring a deep insight into the electron transfer mechanism and applications of one-dimensional (1D) van der Waals heterostructures (vdWHs) has always been a significant challenge. Herein, through direct observation using aberration-corrected transmission electron microscopy (AC-TEM), we verify the stable formation of a high-quality 1D heterostructure composed of PbI2@single-walled carbon nanotubes (SWCNTs). The phenomenon of electron transfer between PbI2 and SWCNT is elucidated through spectroscopic investigations, including Raman and X-ray photoelectron spectroscopy (XPS). Electrochemical testing indicates the electron transfer and enduring stability of 1D PbI2 within SWCNTs. Moreover, leveraging the aforementioned electron transfer mechanism, we engineer self-powered photodetectors that exhibit exceptional photocurrent and a 3-order-of-magnitude switching ratio. Subsequently, we reveal its unique electron transfer behavior using Kelvin probe force microscopic (KPFM) tests. According to KPFM, the average surface potential of SWCNTs decreases by 80.6 mV after filling. Theoretical calculations illustrate a charge transfer of 0.02 e per unit cell. This work provides an effective strategy for the in-depth investigation and application of electron transfer in 1D vdWHs.

10.
Cell Death Dis ; 15(1): 33, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212299

ABSTRACT

Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), and prolonged ER stress leads to cell apoptosis. Despite increasing research in this area, the underlying molecular mechanisms remain unclear. Here, we discover that ER stress upregulates the UPR signaling pathway while downregulating E2F target gene expression and inhibiting the G2/M phase transition. Prolonged ER stress decreases the mRNA levels of E2F2, which specifically regulates the expression of F-Box Protein 5(FBXO5), an F-box protein that functions as an inhibitor of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase complex. Depletion of FBXO5 results in increased ER stress-induced apoptosis and decreased expression of proteins related to PERK/IRE1α/ATF6 signaling. Overexpression of FBXO5 wild-type (not its ΔF-box mutant) alleviates apoptosis and the expression of the C/EBP Homologous Protein (CHOP)/ATF. Mechanistically, we find that FBXO5 directly binds to and promotes the ubiquitin-dependent degradation of RNF183, which acts as a ubiquitin E3 ligase in regulating ER stress-induced apoptosis. Reversal of the apoptosis defects caused by FBXO5 deficiency in colorectal cancer cells can be achieved by knocking down RNF183 in FBXO5-deficient cells. Functionally, we observed significant upregulation of FBXO5 in colon cancer tissues, and its silencing suppresses tumor occurrence in vivo. Therefore, our study highlights the critical role of the FBXO5/RNF183 axis in ER stress regulation and identifies a potential therapeutic target for colon cancer treatment.


Subject(s)
Colonic Neoplasms , F-Box Proteins , Humans , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Endoribonucleases/metabolism , Endoplasmic Reticulum Stress/genetics , Unfolded Protein Response , Ubiquitin/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Colonic Neoplasms/genetics , Apoptosis/genetics , Cell Cycle Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Sci Rep ; 14(1): 2226, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38278802

ABSTRACT

In plants, B3 transcription factors play important roles in a variety of aspects of their growth and development. While the B3 transcription factor has been extensively identified and studied in numerous species, there is limited knowledge regarding its B3 superfamily in pepper. Through the utilization of genome-wide sequence analysis, we identified a total of 106 B3 genes from pepper (Capsicum annuum), they are categorized into four subfamilies: RAV, ARF, LAV, and REM. Chromosome distribution, genetic structure, motif, and cis-acting element of the pepper B3 protein were analyzed. Conserved gene structure and motifs outside the B3 domain provided strong evidence for phylogenetic relationships, allowing potential functions to be deduced by comparison with homologous genes from Arabidopsis. According to the high-throughput transcriptome sequencing analysis, expression patterns differ during different phases of fruit development in the majority of the 106 B3 pepper genes. By using qRT-PCR analysis, similar expression patterns in fruits from various time periods were discovered. In addition, further analysis of the CaRAV4 gene showed that its expression level decreased with fruit ripening and located in the nucleus. B3 transcription factors have been genome-wide characterized in a variety of crops, but the present study is the first genome-wide analysis of the B3 superfamily in pepper. More importantly, although B3 transcription factors play key regulatory roles in fruit development, it is uncertain whether B3 transcription factors are involved in the regulation of the fruit development and ripening process in pepper and their specific regulatory mechanisms because the molecular mechanisms of the process have not been fully explained. The results of the study provide a foundation and new insights into the potential regulatory functions and molecular mechanisms of B3 genes in the development and ripening process of pepper fruits, and provide a solid theoretical foundation for the enhancement of the quality of peppers and their selection and breeding of high-yield varieties.


Subject(s)
Capsicum , Transcription Factors , Transcription Factors/metabolism , Fruit/chemistry , Capsicum/metabolism , Phylogeny , Plant Breeding , Gene Expression Regulation, Plant
12.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 252-268, 2024 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-38258645

ABSTRACT

The elucidation of resources pertaining to the Chimonanthus praecox varieties and the establishment of a fingerprint serve as crucial underpinnings for advancing scientific inquiry and industrial progress in relation to C. praecox. Employing the SSR molecular marker technology, an exploration of the genetic diversity of 175 C. praecox varieties (lines) in the Yanling region was conducted, and an analysis of the genetic diversity among these varieties was carried out using the UPDM clustering method in NTSYSpc 2.1 software. We analyzed the genetic structure of 175 germplasm using Structure v2.3.3 software based on a Bayesian model. General linear model (GLM) association was utilized to analyze traits and markers. The genetic diversity analysis revealed a mean number of alleles (Na) of 6.857, a mean expected heterozygosity (He) of 0.496 3, a mean observed heterozygosity (Ho) of 0.503 7, a mean genetic diversity index of Nei՚s of 0.494 9, and a mean Shannon information index of 0.995 8. These results suggest that the C. praecox population in Yanling exhibits a rich genetic diversity. Additionally, the population structure and the UPDM clustering were examined. In the GLM model, a total of fifteen marker loci exhibited significant (P < 0.05) association with eight phenotypic traits, with the explained phenotypic variation ranging from 14.90% to 36.03%. The construction of fingerprints for C. praecox varieties (lines) was accomplished by utilizing eleven primer pairs with the highest polymorphic information content, resulting in the analysis of 175 SSR markers. The present study offers a thorough examination of the genetic diversity and SSR molecular markers of C. praecox in Yanling, and establishes a fundamental germplasm repository of C. praecox, thereby furnishing theoretical underpinnings for the selection and cultivation of novel and superior C. praecox varieties, varietal identification, and resource preservation and exploitation.


Subject(s)
Genetic Variation , Bayes Theorem , Biomarkers , Phenotype , Cluster Analysis
13.
Anticancer Agents Med Chem ; 24(6): 400-411, 2024.
Article in English | MEDLINE | ID: mdl-38192142

ABSTRACT

BACKGROUND: Efficient targeted molecular therapeutics are needed for the treatment of triple-negative breast cancer (TNBC), a highly invasive and difficult-to-treat form of breast cancer associated with a poor prognosis. OBJECTIVES: This study aims to evaluate the potential of selective CDK4/6 inhibitors as a therapeutic option for TNBC by impairing the cell cycle G1 phase through the inhibition of retinoblastoma protein (Rb) phosphorylation. METHODS: In this study, we synthesized a compound called JHD205, derived from the chemical structure of Abemaciclib, and examined its inhibitory effects on the malignant characteristics of TNBC cells. RESULTS: Our results demonstrated that JHD205 exhibited superior tumor growth inhibition compared to Abemaciclib in breast cancer xenograft chicken embryo models. Western blot analysis revealed that JHD205 could dosedependently degrade CDK4 and CDK6 while also causing abnormal changes in other proteins associated with CDK4/6, such as p-Rb, Rb, and E2F1. Moreover, JHD205 induced apoptosis and DNA damage and inhibited DNA repair by upregulating Caspase3 and p-H2AX protein levels. CONCLUSION: Collectively, our findings suggest that JHD205 holds promise as a potential treatment for breast carcinoma.


Subject(s)
Aminopyridines , Antineoplastic Agents , Apoptosis , Benzimidazoles , Cell Proliferation , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Humans , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Aminopyridines/pharmacology , Aminopyridines/chemistry , Aminopyridines/chemical synthesis , Cell Proliferation/drug effects , Animals , Apoptosis/drug effects , Molecular Structure , Female , Structure-Activity Relationship , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Chick Embryo , Tumor Cells, Cultured
14.
Nano Lett ; 24(2): 741-747, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38166145

ABSTRACT

The emergence of one-dimensional van der Waals heterostructures (1D vdWHs) opens up potential fields with unique properties, but precise synthesis remains a challenge. The utilization of mixed conductive types of carbon nanotubes as templates has imposed restrictions on the investigation of the electrical behavior and interlayer interaction of 1D vdWHs. In this study, we efficiently encapsulated silver iodide in high-purity semiconducting single-walled carbon nanotubes (sSWCNTs), forming 1D AgI@sSWCNT vdWHs. We characterized the semiconductor-metal transition and increased the carrier concentration of individual AgI@sSWCNTs via sensitive dielectric force microscopy and confirmed the results through electrical device tests. The electrical behavior transition was attributed to an interlayer charge transfer, as demonstrated by Kelvin probe force microscopy. Furthermore, we showed that this method of synthesizing 1D heterostructures can be extended to other metal halides. This work opens the door for the further exploration of the electrical properties of 1D vdWHs.

15.
J Hazard Mater ; 465: 133115, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38096614

ABSTRACT

Microplastic pollution in freshwater environments has received increasing attention. However, limited research on the occurrence and distribution of microplastics in plateau lakes. This study investigated the microplastic characteristics and influencing factors in lakes with different land cover types on the Inner Mongolia Plateau. Results showed that microplastic abundance ranged from 0.5 to 12.6 items/L in water and 50-325 items/kg in sediments. Microplastics in water were predominantly polypropylene (50.5%), fragments (40.5%), and 50-200 µm (66.7%). High-density (27.9%), fibrous (69.3%), and large-sized microplastics (47.7%) were retained primarily in lake sediments. The highest microplastic abundance in water was found in cropland lakes and grassland lakes, while that in sediments was in descending order of desert lakes > cropland lakes > grassland lakes > forest-grassland lakes. Differences among lake types suggest that agriculture, tourism, and atmospheric transport may be critical microplastic sources. Microplastic distribution was positively correlated with farmland and artificial surface coverage, showing that land cover types related to human activities could exacerbate microplastic pollution in lakes. Redundancy analysis showed that ammonia nitrogen and pH were the key physicochemical factors affecting microplastic distribution in lakes, indicating the potential sources of microplastics in lakes and the uniqueness of microplastic occurrence characteristics in desert saline-alkaline lakes, respectively.

16.
Sheng Wu Gong Cheng Xue Bao ; 39(7): 2839-2860, 2023 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-37584135

ABSTRACT

The present study aims to explore the genetic diversity of germplasm resources of Chrysanthemum×morifolium (hereinafter, C.×morifolium) at the molecular level and to establish a fingerprint database of C.×morifolium varieties. We employed 12 pairs of primers with high levels of polymorphism, clear bands, and high degrees of reproducibility to analyze the SSR molecular markers and genetic diversity of 91 C.×morifolium materials and 14 chrysanthemum- related materials. With regard to constructing the fingerprints of the tested materials, we chose 9 pairs of core primers. The findings revealed that 12 primer pairs detected 104 alleles in 105 samples, ranging from 2 to 26. The average number of observed alleles (Na) per site was 9.25. The average number of effective alleles (Ne) per site was 2.745 6, with its range being 1.276 0 to 4.742 5. Shannon genetic diversity index (I) values ranged between 0.513 3 and 2.239 9 (M=1.209 0). Nei's gene diversity index (H) ranged between 0.216 3 and 0.789 1 (M=0.578 0). The observed heterozygosity (Ho) ranged between 0.223 3 and 0.895 2 (M=0.557 5). The expected heterozygosity (He) ranged between 0.217 4 and 0.793 3 (M=0.580 8). The polymorphism information content (PIC) ranged between 0.211 5 and 0.774 0 (M=0.532 9). The genetic similarity (GS) ranged between 0.228 5 and 1.000 0 (M=0.608 3). Cluster analysis revealed that when the genetic distance (GD) equals to 0.30, the tested materials can be classified into 2 groups. When the GD equals to 0.27, the first group can be divided into 6 subgroups; accordingly, 105 tested materials can be divided into 7 subgroups. The cophenetic correlation test was carried out based on the cluster analysis, and the corresponding results showed that the cluster map correlated with the genetic similarity coefficient (r=0.952 73). According to the results of Structure population analysis, we obtained the optimal population number, with the true number of populations (K) being 3 and the population being divided concerning Q≥0.5. Three subgroups, i.e., Q1, Q2 and Q3, included 34, 33 and 28 germplasms, respectively, and the remaining 10 germplasms were identified as the mixed population. During the experiment, 9 pairs of core primers were screened among the total of 12 for a complete differentiation regarding 105 tested materials, and the fingerprints of 91 C.×morifolium materials and 14 chrysanthemum-related materials were further constructed. Overall, there were significant genetic differences and rich genetic diversity among C.×morifolium materials, which would shed light on the garden application and variety selection fields of C.×morifolium. The fingerprint database of 105 C.×morifolium varieties and chrysanthemum-related species may provide technical support for future research regarding the identification and screening system of C.×morifolium varieties.


Subject(s)
Chrysanthemum , Genetic Variation , Chrysanthemum/genetics , Reproducibility of Results , Microsatellite Repeats/genetics , Polymorphism, Genetic , Biomarkers , Phylogeny
17.
Chem Commun (Camb) ; 59(64): 9778-9779, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37497731

ABSTRACT

Correction for 'Catalytically active designer crown-jewel Pd-based nanostructures encapsulated in metal-organic frameworks' by Liyu Chen et al., Chem. Commun., 2017, 53, 1184-1187, https://doi.org/10.1039/C6CC09270E.

18.
Adv Mater ; 35(36): e2303198, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37400106

ABSTRACT

Different from hexagonal boron nitride (hBN) sheets, the bandgap of hBN nanoribbons (BNNRs) can be changed by spatial/electrostatic confinement. It is predicted that a transverse electric field can narrow the bandgap and even cause an insulator-metal transition in BNNRs. However, experimentally introducing an overhigh electric field across the BNNR remains challenging. Here, it is theoretically and experimentally demonstrated that water adsorption greatly reduces the bandgap of zigzag-oriented BNNRs (zBNNRs). Ab initio calculations show that water molecules can be favorably assembled within the trench between two adjacent BNNRs to form a polar ice layer, which induces a transverse equivalent electric field of over 2 V nm-1 accounting for the bandgap reduction. Field-effect transistors are successfully fabricated from zBNNRs with different widths. The conductance of water-adsorbed zBNNRs can be tuned over 3 orders in magnitude via modulation of the equivalent electrical field at room temperature. Furthermore, photocurrent response measurements are taken to determine the optical bandgaps of zBNNRs with water adsorption. The zBNNR with increased width can exhibit a bandgap down to 1.17 eV. This study offers fundamental insights into new routes toward realizing electronic/optoelectronic devices and circuits based on hexagonal boron nitride.

19.
Biochem Biophys Res Commun ; 667: 186-193, 2023 07 30.
Article in English | MEDLINE | ID: mdl-37229827

ABSTRACT

The deubiquitinating enzyme USP14 has been established as a crucial regulator in various diseases, including tumors, neurodegenerative diseases, and metabolic diseases, through its ability to stabilize its substrate proteins. Our group has utilized proteomic techniques to identify new potential substrate proteins for USP14, however, the underlying signaling pathways regulated by USP14 remain largely unknown. Here, we demonstrate the key role of USP14 in both heme metabolism and tumor invasion by stabilizing the protein BACH1. The cellular oxidative stress response factor NRF2 regulates antioxidant protein expression through binding to the antioxidant response element (ARE). BACH1 can compete with NRF2 for ARE binding, leading to the inhibition of the expression of antioxidant genes, including HMOX-1. Activated NRF2 also inhibits the degradation of BACH1, promoting cancer cell invasion and metastasis. Our findings showed a positive correlation between USP14 expression and NRF2 expression in various cancer tissues from the TCGA database and normal tissues from the GTEx database. Furthermore, activated NRF2 was found to increase USP14 expression in ovarian cancer (OV) cells. The overexpression of USP14 was observed to inhibit HMOX1 expression, while USP14 knockdown had the opposite effect, suggesting a role for USP14 in regulating heme metabolism. The depletion of BACH1 or inhibition of heme oxygenase 1 (coded by HMOX-1) was also found to significantly impair USP14-dependent OV cell invasion. In conclusion, our results highlight the importance of the NRF2-USP14-BACH1 axis in regulating OV cell invasion and heme metabolism, providing evidence for its potential as a therapeutic target in related diseases.


Subject(s)
NF-E2-Related Factor 2 , Ovarian Neoplasms , Humans , Female , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Antioxidants , Proteomics , Ovarian Neoplasms/genetics , Heme , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Ubiquitin Thiolesterase/genetics
20.
Environ Res ; 228: 115808, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37011794

ABSTRACT

As a novel energy device, microbial fuel cells (MFCs) have attracted much attention for their dual functions of electricity generation and sewage treatment. However, the sluggish oxygen reduction reaction (ORR) kinetic on the cathode have hindered the practical application of MFCs. In this work, metallic organic framework derived carbon framework co-doped by Fe, S, N tri-elements was used as alternative electrocatalyst to the conventional Pt/C cathode catalyst in pH-universal electrolytes. The amount of thiosemicarbazide from 0.3 to 3 g determined the surface chemical property, and therefore the ORR activity of FeSNC catalysts. The sulfur/nitrogen doping and Fe/Fe3C embedded in carbon shell was characterized by X-ray photoelectron spectroscopy and transmission electron microscopy. The synergy of iron salt and thiosemicarbazide contributed to the improvement of nitrogen and sulfur doping. Sulfur atoms were successfully doped into the carbon matrix and formed a certain amount of thiophene- and oxidized-sulfur. The optimal FeSNC-3 catalyst synthesized with 1.5 g of thiosemicarbazide exhibited the highest ORR activity with a positive half wave potential of 0.866 V in alkaline and 0.691 V (vs. Reversible Hydrogen Electrode) in neutral electrolyte, which both outperformed the commercial Pt/C catalyst. However, as the amount of thiosemicarbazide surpassed 1.5 g, the catalytic performance of FeSNC-4 was lowered, and this could be assigned to the decreased defects and low specific surface area. The excellent ORR performance in neutral medium urged FeSNC-3 as good cathode catalyst in single chambered MFC (SCMFC). It showed the highest maximum power density of 2126 ± 100 mW m-2, excellent output stability of 8.14% decline in 550 h, chemical oxygen demand removal of 90.7 ± 1.6% and coulombic efficiency of 12.5 ± 1.1%, all superior to those of benchmark SCMFC-Pt/C (1637 ± 35 mW m-2, 15.4%, 88.9 ± 0.9%, and 10.2 ± 1.1%). These outstanding results were associated to the large specific surface area and synergistic interaction of multiple active sites, like Fe/Fe3C, Fe-N4, pyridinic N, graphite N and thiophene-S.


Subject(s)
Bioelectric Energy Sources , Carbon/chemistry , Porosity , Iron/chemistry , Oxygen/chemistry , Oxidation-Reduction , Nitrogen , Sulfur/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...