Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 368
Filter
1.
Aust Crit Care ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39261233

ABSTRACT

BACKGROUND: Patients not mechanically ventilated often fail to achieve the recommended duration of awake prone positioning due to treatment interruption and discomfort. Few studies have investigated the link between treatment outcome and prone-positioning duration, the inability to accurately guide patients to perform awake prone positioning. OBJECTIVES: The aim of this study was to characterise and explore the relationship between awake prone-positioning duration with the ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO2/FiO2 [P/F]) changes and the risk of disease aggravation. METHODS: A prospective cohort study; dose-response relationship was used. Awake prone positioning was performed on patients with severe Corona Virus Disease 2019 (COVID-19) for 5 consecutive days from 1 February to 21 March 2023. Linear and logistic regression models were utilised to assess the association between prone-positioning duration with P/F changes and risk of disease aggravation, respectively. Meanwhile, the restricted cubic spline was used to evaluate the dose-response relationships. RESULTS: A total of 408 patients with severe COVID-19 were analysed. The daily prone positioning duration was 4.57 ± 2.74 h/d, and the changes in P/F were 67.63 ± 69.17 mmHg. On the sixth day of hospitalisation, the condition of 52 (12.8%) patients deteriorated. There was a positive, nonlinear dose-response relationship (Poverall < 0.001, Pnonlinearity = 0.041) and a strong, significant positive correlation (ß = 29.286, t = 4.302, P < 0.001) between the prone-positioning duration and P/F changes. The risk of disease aggravation gradually decreases with the increase of prone-positioning duration. Nonetheless, the prone-positioning duration was not statistically associated with disease aggravation (odds ratio = 0.986, 95% confidence interval: 0.514-1.895). CONCLUSIONS: Awake prone positioning for ≥4 h/d is effective on oxygenation (not mortality/intubation) and is achievable for patients with severe COVID-19. Prolonged prone positioning is promising in improving patients' oxygenation but does not alleviate their risk of disease aggravation.

2.
Polymers (Basel) ; 16(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39274026

ABSTRACT

Biomaterials play an important role in treating bone defects. The functional characteristics of scaffolds, such as their structure, mechanical strength, and antibacterial and osteogenesis activities, effectively promote bone regeneration. In this study, mineralized collagen and polycaprolactone were used to prepare loaded porous scaffolds with bilayer-structured microspheres with dual antibacterial and osteogenesis functions. The different drug release mechanisms of PLGA and chitosan in PLGA/CS microspheres caused differences in the drug release models in terms of the duration and rate of Pac-525 and BMP-2 release. The prepared PLGA(BMP-2)/CS(Pac-525)@MC/PCL scaffolds were analyzed in terms of physical characteristics, bioactivity, and antibacterial properties. The scaffolds with a dimensional porous structure showed similar porosity and pore diameter to cancellous bone. The release curve of the microspheres and scaffolds with high encapsulation rates displayed the two-stage release of Pac-525 and BMP-2 over 30 days. It was found that the scaffolds could inhibit S. aureus and E. coli and then promote ALP activity. The PLGA(BMP-2)/CS(Pac-525)@MC/PCL scaffold could be used as a dual delivery system to promote bone regeneration.

3.
Bioconjug Chem ; 35(9): 1417-1428, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39225485

ABSTRACT

Electrostatic self-assembly between negatively charged nucleic acids and cationic materials is the basis for the formulation of the delivery systems. Nevertheless, structural disintegration occurs because their colloidal stabilities are frequently insufficient in a hostile biological environment. To overcome the sequential biological barriers encountered during transcellular gene delivery, we attempted to use in situ polymerization onto plasmid DNA (pDNA) with a variety of functional monomers, including N-(3-aminopropyl)methacrylate, (aminopropyl)methacrylamide hydrochloride, 1-vinylimidazole, and 2-methacryloyloxyethylphosphorylcholine and N,N'-bis(acryloyl) cystamine. The covalently linked monomers could polymerize into a network structure on top of pDNA, providing excellent structural stability. Additionally, the significant proton buffering capacity of 1-vinylimidazole is expected to aid in the release of pDNA payloads from acidic and digestive endolysosomes. In addition, the redox-mediated cleavage of the disulfide bond in N,N'-bis(acryloyl)cystamine allows for the selective cleavage of the covalently linked network in the cytosolic microenvironment. This is due to the high intracellular level of glutathione, which promotes the liberation of pDNA payloads in the cell interiors. The proposed polymerization strategies resulted in well-defined nanoscale pDNA delivery systems. Excellent colloidal stabilities were observed, even when incubated in the presence of high concentrations of heparin (10 mg/mL). In contrast, the release of pDNA was confirmed upon incubation in the presence of glutathione, mimicking the intracellular microenvironment. Cell transfection experiments verified their efficient cellular uptake and gene expression activities in the hard-transfected MCF-7 cells. Hence, the polymerization strategy used in the fabrication of covalently linked nonviral gene delivery systems shows promise in creating high-performance gene delivery systems with diverse functions. This could open new avenues in cellular microenvironment engineering.


Subject(s)
DNA , Plasmids , Polymerization , Humans , DNA/administration & dosage , DNA/chemistry , Plasmids/administration & dosage , Gene Transfer Techniques , Methacrylates/chemistry , Transfection/methods , MCF-7 Cells , Phosphorylcholine/chemistry , Phosphorylcholine/analogs & derivatives
4.
Research (Wash D C) ; 7: 0472, 2024.
Article in English | MEDLINE | ID: mdl-39268503

ABSTRACT

Triple-negative breast cancer (TNBC) is currently the worst prognostic subtype of breast cancer, and there is no effective treatment other than chemotherapy. Processing of precursors 1 (POP1) is the most substantially up-regulated RNA-binding protein (RBP) in TNBC. However, the role of POP1 in TNBC remains clarified. A series of molecular biological experiments in vitro and in vivo and clinical correlation analyses were conducted to clarify the biological function and regulatory mechanism of POP1 in TNBC. Here, we identified that POP1 is significantly up-regulated in TNBC and associated with poor prognosis. We further demonstrate that POP1 promotes the cell cycle and proliferation of TNBC in vitro and vivo. Mechanistically, POP1 directly binds to the coding sequence (CDS) region of CDKN1A mRNA and degrades it. The degradation process depends on the N6-methyladenosine (m6A) modification at the 497th site of CDKN1A and the recognition of this modification by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Moreover, the m6A inhibitor STM2457 potently impaired the proliferation of POP1-overexpressed TNBC cells and improved the sensitivity to paclitaxel. In summary, our findings reveal the pivotal role of POP1 in promoting TNBC proliferation by degrading the mRNA of CDKN1A and that inhibition of m6A with STM2457 is a promising therapeutic strategy for TNBC.

6.
Cell Biochem Biophys ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39030333

ABSTRACT

Sinensetin is a product isolated from Orthosiphon aristatus, and its antitumor activities have been well established. This study focused on the role and mechanism of sinensetin in lung adenocarcinoma (LUAD). LUAD cells were treated with various concentrations of sinensetin. The proliferation, migration, invasion, and angiogenesis of LUAD cells were detected using colony formation, transwell, and tube formation assays, respectively. The protein levels of VEGF-A, VEGFR-2, and phosphorylated AKT (ser473) were measured by western blotting. The targeted relationship between VEGF-A and miR-374c-5p was verified by luciferase reporter assay. BALB/c nude mice inoculated with A549 cells were treated with sinensetin (40 mg/kg/day) by gavage for 21 days to investigate the effect of sinensetin on tumor growth and angiogenesis in vivo. We found that sinensetin reduced proliferation, migration, invasion, angiogenesis, and cancer stem characteristics of LUAD cells. Sinensetin also suppressed LUAD tumor growth and angiogenesis in vivo. Sinensetin downregulated VEGF-A expression in LUAD cells by enhancing miR-374c-5p expression. MiR-374c-5p inhibited the VEGF-A/VEGFR-2/AKT pathway in LUAD cells. The antitumor effect of sinensetin was reversed by overexpression of VEGF-A or inhibition of miR-374c-5p. Overall, sinensetin upregulates miR-374c-5p to inhibit the VEGF-A/VEGFR-2/AKT pathway, thereby exerting antitumor effect on LUAD.

7.
BMC Anesthesiol ; 24(1): 218, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956515

ABSTRACT

BACKGROUND: As a new type of intravenous anesthetic, ciprofol has the advantages of fast onset of action, fast recovery and high clearance rate. This study aimed to investigate the effectiveness and safety of ciprofol versus traditional propofol for anesthesia and sedation in and out of the operating room. METHODS: We searched the literature in PubMed, Web of Science, Cochrane Library, and Embase databases from January 2021 to December 2023. All clinical studies comparing the sedative effects of propofol and ciprofol, both inside and outside the operating room, were included in our trial. The main outcome measures were induction time and incidence of injection-site pain. Data are merged using risk ratio and standardized mean difference with 95% confidence interval. Subgroup analysis, meta-regression, sensitivity analysis, and publication bias were performed. The study protocol was prospectively registered with PROSPERO (CRD42023447747). RESULTS: A total of 15 randomized, controlled trials involving 2002 patients were included in this study. Compared with propofol, ciprofol has a longer induction time in the operating room but a shorter induction time in non-operating room settings. Ciprofol can effectively reduce the risk of injection-site pain and respiratory depression both inside and outside the operating room. In addition, the risk of drug-related hypotension induced with ciprofol in the operating room is lower, but the awakening time is also longer. Meta-regression analysis showed that neither age nor BMI were potential sources of heterogeneity. Funnel plot, egger and begg tests showed no significant publication bias. Sensitivity analyzes indicate that our results are robust and reliable. CONCLUSION: Ciprofol has absolute advantages in reducing the risk of injection-site pain and respiratory depression, both in and outside operating room. Intraoperative use of ciprofol reduces the risk of drug-related hypotension and may also reduce the risk of intraoperative physical movements. However, ciprofol may have longer induction and awakening time than propofol.


Subject(s)
Anesthetics, Intravenous , Operating Rooms , Propofol , Propofol/adverse effects , Propofol/administration & dosage , Humans , Anesthetics, Intravenous/adverse effects , Anesthetics, Intravenous/administration & dosage , Hypnotics and Sedatives/adverse effects , Randomized Controlled Trials as Topic/methods
8.
Regen Biomater ; 11: rbae075, 2024.
Article in English | MEDLINE | ID: mdl-39055306

ABSTRACT

Peripheral nerve injury is a debilitating condition that have a profound impact on the overall quality of an individual's life. The repair of peripheral nerve defects continues to present significant challenges in the field. Iron oxide magnetic nanoparticles (IONPs) have been recognized as potent nanotools for promoting the regeneration of peripheral nerves due to their capability as biological carriers and their ability to template the hydrogel structure under an external magnetic field. This research used a fibrin nanofiber hydrogel loaded with IONPs (IONPs/fibrin) to promote the regeneration of peripheral nerves in rats. In vitro examination of PC12 cells on various concentrations of IONPs/fibrin hydrogels revealed a remarkable increase in NGF and VEGF expression at 2% IONPs concentration. The biocompatibility and degradation of 2% IONPs/fibrin hydrogel were assessed using the in vivo imaging system, demonstrating subcutaneous degradation within a week without immediate inflammation. Bridging a 10-mm sciatic nerve gap in Sprague Dawley rats with 2% IONPs/fibrin hydrogel led to satisfactory morphological recovery of myelinated nerve fibers. And motor functional recovery in the 2% IONPs/fibrin group was comparable to autografts at 6, 9 and 12 weeks postoperatively. Hence, the composite fibrin hydrogel incorporating 2% IONPs exhibits potential for peripheral nerve regeneration.

9.
Biomaterials ; 311: 122677, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38917704

ABSTRACT

The surface physiochemical properties of nanomedicine play a crucial role in modulating biointerfacial reactions in sequential biological compartments, accordingly accomplishing the desired programmed delivery scenario to intracellular targets. PEGylation, which involves modifying the surface with a layer of poly(ethylene glycol), has been validated as an effective strategy for minimizing adverse biointerfacial interactions. However, it has also been observed to impede cellular uptake and intracellular trafficking activities. To address this dilemma, we propose a dynamic surface chemistry approach that actively prevents non-specific reactions in systemic circulation, while readily facilitating cellular uptake by converting into a highly cytomembrane-adhesive state. Moreover, the surface becomes more adhesive to endolysosomal membranes, enabling translocation into the cytosol. In this study, PEGylated mRNA delivery nanoparticulates were tethered with charge-reversible polymers to create dynamic surroundings through click chemistry. Importantly, the dynamic surroundings exhibited negative charges under physiological conditions (pH 7.4). This property prevented degradation by anionic nucleases and structural disassembly induced by endogenous charged biological species. Consequently, the nanoparticles exhibited appreciable stealth function, effectively managing the first pass effect, leading to prolonged blood retention and improved bioavailabilities at targeted cells. Furthermore, the dynamic surroundings shifted towards relatively positive charges in the tumor microenvironment (pH 6.8). As a result, the nanoparticles were more likely to be taken up by tumors due to their electrostatic affinities towards polyanionic cytomembranes. Eventually, the internalized mRNA nanomedicine transformed responsive to the surrounding microenvironment into highly positive charges within acidic endolysosomes (pH 5.0), exerting explosive disruptive potencies on the endolysosomal structures, thus facilitating translocation of mRNA from the digestive endolysosomes into the targeted cytosol. Notably, the dynamic surroundings also reduced the immunogenicity of naked mRNA due to their stealthy properties and rapid endolysosomal translocation functions. In summary, our proposed unique triple-transformable dynamic surface chemistry provided an intriguing delivery scenario that overcomes sequential biological barriers, contributing to efficient expression of the encapsulated mRNA at targeted tumors.


Subject(s)
Neoplasms , Polyethylene Glycols , RNA, Messenger , RNA, Messenger/genetics , RNA, Messenger/metabolism , Humans , Animals , Neoplasms/therapy , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Cell Line, Tumor , Mice, Nude , Mice , Mice, Inbred BALB C , Female
10.
Bioact Mater ; 40: 168-181, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38910968

ABSTRACT

Bone, renowned for its elegant hierarchical structure and unique mechanical properties, serves as a constant source of inspiration for the development of synthetic materials. However, achieving accurate replication of bone features in artificial materials with remarkable structural and mechanical similarity remains a significant challenge. In this study, we employed a cascade of continuous fabrication processes, including biomimetic mineralization of collagen, bidirectional freeze-casting, and pressure-driven fusion, to successfully fabricate a macroscopic bulk material known as artificial compact bone (ACB). The ACB material closely replicates the composition, hierarchical structures, and mechanical properties of natural bone. It demonstrates a lamellated alignment of mineralized collagen (MC) microfibrils, similar to those found in natural bone. Moreover, the ACB exhibits a similar high mineral content (70.9 %) and density (2.2 g/cm3) as natural cortical bone, leading to exceptional mechanical properties such as high stiffness, hardness, and flexural strength that are comparable to those of natural bone. Importantly, the ACB also demonstrates excellent mechanical properties in wet, outstanding biocompatibility, and osteogenic properties in vivo, rendering it suitable for a broad spectrum of biomedical applications, including orthopedic, stomatological, and craniofacial surgeries.

11.
Cell Oncol (Dordr) ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809326

ABSTRACT

PURPOSE: Leukaemia remains a major contributor to global mortality, representing a significant health risk for a substantial number of cancer patients. Despite notable advancements in the field, existing treatments frequently exhibit limited efficacy or recurrence. Here, we explored the potential of abolishing HVEM (herpes virus entry mediator, TNFRSF14) expression in tumours as an effective approach to treat acute lymphoblastic leukaemia (ALL) and prevent its recurrence. METHODS: The clinical correlations between HVEM and leukaemia were revealed by public data analysis. HVEM knockout (KO) murine T cell lymphoblastic leukaemia cell line EL4 were generated using CRISPR-Cas9 technology, and syngeneic subcutaneous tumour models were established to investigate the in vivo function of HVEM. Immunohistochemistry (IHC), RNA-seq and flow cytometry were used to analyse the tumour immune microenvironment (TIME) and tumour draining lymph nodes (dLNs). Immune functions were investigated by depletion of immune subsets in vivo and T cell functional assays in vitro. The HVEM mutant EL4 cell lines were constructed to investigate the functional domain responsible for immune escape. RESULTS: According to public databases, HVEM is highly expressed in patients with ALL and acute myeloid leukemia (AML) and is negatively correlated with patient prognosis. Genetic deletion of HVEM in EL4 cells markedly inhibited tumour progression and prolonged the survival of tumour-bearing mice. Our experiments proved that HVEM exerted its immunosuppressive effect by inhibiting antitumour function of CD8+ T cell through CRD1 domain both in vivo and in vitro. Additionally, we identified a combination therapy capable of completely eradicating ALL tumours, which induces immune memory toward tumour protection. CONCLUSIONS: Our study reveals the potential mechanisms by which HVEM facilitates ALL progression, and highlights HVEM as a promising target for clinical applications in relapsed ALL therapy.

12.
Bioorg Chem ; 147: 107391, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677010

ABSTRACT

Apoptosis signal regulated kinase 1 (ASK1, MAP3K5) is a member of the mitogen activated protein kinase (MAPK) signaling pathway, involved in cell survival, differentiation, stress response, and apoptosis. ASK1 kinase inhibition has become a promising strategy for the treatment of Non-alcoholic steatohepatitis (NASH) disease. A series of novel ASK1 inhibitors with indazole scaffolds were designed and synthesized, and their ASK1 kinase activities were evaluated. The System Structure Activity Relationship (SAR) study discovered a promising compound 33c, which has a strong inhibitory effect on ASK1. Noteworthy observations included a discernible reduction in lipid droplets within LO2 cells stained with Oil Red O, coupled with a decrease in LDL, CHO, and TG content within the NASH model cell group. Mechanistic inquiries revealed that compound 33c could inhibit the protein expression levels of the upregulated ASK1-p38/JNK signaling pathway in TNF-α treated HGC-27 cells and regulate apoptotic proteins. In summary, these findings suggest that compound 33c may be valuable for further research as a potential candidate compound against NASH.


Subject(s)
Drug Design , Indazoles , MAP Kinase Kinase Kinase 5 , Molecular Docking Simulation , Protein Kinase Inhibitors , Humans , Apoptosis/drug effects , Dose-Response Relationship, Drug , Indazoles/pharmacology , Indazoles/chemical synthesis , Indazoles/chemistry , MAP Kinase Kinase Kinase 5/antagonists & inhibitors , MAP Kinase Kinase Kinase 5/metabolism , Molecular Structure , Non-alcoholic Fatty Liver Disease/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/metabolism
13.
J Mater Chem B ; 12(19): 4629-4641, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38666407

ABSTRACT

Enlightened by the great success of the drug repurposing strategy in the pharmaceutical industry, in the current study, material repurposing is proposed where the performance of carbonyl iron powder (CIP), a nutritional intervention agent of iron supplement approved by the US FDA for iron deficiency anemia in clinic, was explored in anti-cancer treatment. Besides the abnormal iron metabolic characteristics of tumors, serving as potential targets for CIP-based cancer therapy under the repurposing paradigm, the efficacy of CIP as a catalyst in the Fenton reaction, activator for dihydroartemisinin (DHA), thus increasing the chemo-sensitivity of tumors, as well as a potent agent for NIR-II photothermal therapy (PTT) was fully evaluated in an injectable alginate hydrogel form. The CIP-ALG gel caused a rapid temperature rise in the tumor site under NIR-II laser irradiation, leading to complete ablation in the primary tumor. Further, this photothermal-ablation led to the significant release of ATP, and in the bilateral tumor model, both primary tumor ablation and inhibition of secondary tumor were observed simultaneously under the synergistic tumor treatment of nutritional-photothermal therapy (NT/PTT). Thus, material repurposing was confirmed by our pioneering trial and CIP-ALG-meditated NT/PTT/immunotherapy provides a new choice for safe and efficient tumor therapy.


Subject(s)
Adenosine Triphosphate , Antineoplastic Agents , Infrared Rays , Animals , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Immunotherapy , Drug Repositioning , Humans , Lasers , Photothermal Therapy , Mice, Inbred BALB C , Cell Proliferation/drug effects , Cell Line, Tumor , Alginates/chemistry , Female , Hydrogels/chemistry , Hydrogels/pharmacology , Drug Screening Assays, Antitumor , Particle Size , Artemisinins/chemistry , Artemisinins/pharmacology
14.
World J Gastrointest Oncol ; 16(4): 1465-1478, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660658

ABSTRACT

BACKGROUND: Colorectal cancer has a low 5-year survival rate and high mortality. Human ß-defensin-1 (hBD-1) may play an integral function in the innate immune system, contributing to the recognition and destruction of cancer cells. Long non-coding RNAs (lncRNAs) are involved in the process of cell differentiation and growth. AIM: To investigate the effect of hBD-1 on the mammalian target of rapamycin (mTOR) pathway and autophagy in human colon cancer SW620 cells. METHODS: CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration. Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation. Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway. Additionally, p-mTOR (Ser2448), Beclin1, and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis. RESULTS: hBD-1 inhibited the proliferative ability of SW620 cells, as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1. hBD-1 decreased the expression of p-mTOR (Ser2448) protein and increased the expression of Beclin1 and LC3II/I protein. Furthermore, bioinformatics analysis identified seven lncRNAs (2 upregulated and 5 downregulated) related to the mTOR pathway. The lncRNA TCONS_00014506 was ultimately selected. Following the inhibition of the lncRNA TCONS_00014506, exposure to hBD-1 inhibited p-mTOR (Ser2448) and promoted Beclin1 and LC3II/I protein expression. CONCLUSION: hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.

15.
Article in English | MEDLINE | ID: mdl-38518161

ABSTRACT

Background: Preeclampsia poses substantial risks during pregnancy. Exploring innovative treatment approaches like the combination of Nifedipine and aspirin is crucial for improving maternal and fetal outcomes. Objective: This study aims to assess the efficacy of nifedipine and aspirin tablets in treating preeclampsia and their impact on blood rheology and coagulation. Methods: We selected 96 pregnant patients with preeclampsia treated at our hospital between January 2020 and January 2022. The patients were randomly assigned to either the research group (n=48) or the control group (n=48). Nifedipine was administered to the control group, while the research group received a combination of Nifedipine and aspirin. We compared the overall treatment effectiveness and the incidence of unfavorable pregnancy outcomes between the two groups. Results: The research group exhibited a significantly higher overall treatment effectiveness rate (93.75%) compared to the control group (P < .05). After treatment, levels of fibrinogen (FIB), whole high-cut blood viscosity (HBV), whole low-cut blood viscosity (LBV), plasma viscosity (PV), and erythrocyte rigidity index (HGX) were significantly lower in the study group than in the control group (P < .05). Additionally, plasminogen time (PT) and activated partial thromboplastin time (APTT) were higher in the research group compared to the control group (P < .05). The research group also experienced a lower frequency of negative pregnancy outcomes (4.17%) in contrast to the control group (18.75%) (P < .05). Conclusions: The nifedipine and aspirin combination effectively treats pregnancy hypertension, enhancing both coagulation and hemorheology for improved maternal and fetal health outcomes.

16.
Vet Microbiol ; 292: 110048, 2024 May.
Article in English | MEDLINE | ID: mdl-38479301

ABSTRACT

The optrA gene encodes an ABC-F protein which confers cross-resistance to oxazolidinones and phenicols. Insertion sequence ISVlu1, a novel ISL3-family member, was recently reported to be involved in the transmission of optrA in Vagococcus lutrae. However, the role of ISVlu1 in mobilizing resistance genes has not yet fully explored. In this study, two complete and three truncated copies of ISVlu1 were found on plasmid pBN62-optrA from Lactococcus garvieae. Analysis of the genetic context showed that both optrA and the phenicols resistance gene fexA were flanked by the complete or truncated ISVlu1 copies. Moreover, three different-sized ISVlu1-based translocatable units (TUs) carrying optrA and/or fexA, were detected from pBN62-optrA. Sequence analysis revealed that the TU-optrA was generated by homologous recombination while TU-fexA and TU-optrA+fexA were the products of illegitimate recombinations. Importantly, conjugation assays confirmed that pBN62-optrA was able to successfully transfer into the recipient Enterococcus faecalis JH2-2. To our knowledge, this is the first report about an optrA-carrying plasmid in L. garvieae which could horizontally transfer into other species. More importantly, the ISVlu1-flanked genetic structures containing optrA and/or fexA were also observed in bacteria of different species, which underlines that ISVlu1 is highly active and plays a vital role in the transfer of some important resistance genes, such as optrA and fexA.


Subject(s)
Anti-Bacterial Agents , Oxazolidinones , Animals , Swine , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Lactococcus/genetics , Enterococcus faecalis , Genes, Bacterial/genetics , Microbial Sensitivity Tests/veterinary
17.
Nat Immunol ; 25(4): 622-632, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454157

ABSTRACT

The development of a vaccine specific to severe acute respiratory syndrome coronavirus 2 Omicron has been hampered due to its low immunogenicity. Here, using reverse mutagenesis, we found that a phenylalanine-to-serine mutation at position 375 (F375S) in the spike protein of Omicron to revert it to the sequence found in Delta and other ancestral strains significantly enhanced the immunogenicity of Omicron vaccines. Sequence FAPFFAF at position 371-377 in Omicron spike had a potent inhibitory effect on macrophage uptake of receptor-binding domain (RBD) nanoparticles or spike-pseudovirus particles containing this sequence. Omicron RBD enhanced binding to Siglec-9 on macrophages to impair phagocytosis and antigen presentation and promote immune evasion, which could be abrogated by the F375S mutation. A bivalent F375S Omicron RBD and Delta-RBD nanoparticle vaccine elicited potent and broad nAbs in mice, rabbits and rhesus macaques. Our research suggested that manipulation of the Siglec-9 pathway could be a promising approach to enhance vaccine response.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Rabbits , Antibodies, Neutralizing , Antibodies, Viral , Macaca mulatta , Macrophages , Nanovaccines , Phagocytosis , Sialic Acid Binding Immunoglobulin-like Lectins
18.
ACS Nano ; 18(9): 6975-6989, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38377439

ABSTRACT

Regarded as one of the hallmarks of tumorigenesis and tumor progression, the evasion of apoptotic cell death would also account for treatment resistance or failure during cancer therapy. In this study, a Ca2+/Cu2+ dual-ion "nano trap" to effectively avoid cell apoptosis evasion by synchronously inducing paraptosis together with apoptosis was successfully designed and fabricated for breast cancer treatment. In brief, disulfiram (DSF)-loaded amorphous calcium carbonate nanoparticles (NPs) were fabricated via a gas diffusion method. Further on, the Cu2+-tannic acid metal phenolic network was embedded onto the NPs surface by self-assembling, followed by mDSPE-PEG/lipid capping to form the DSF-loaded Ca2+/Cu2+ dual-ions "nano trap". The as-prepared nanotrap would undergo acid-triggered biodegradation upon being endocytosed by tumor cells within the lysosome for Ca2+, Cu2+, and DSF releasing simultaneously. The released Ca2+ could cause mitochondrial calcium overload and lead to hydrogen peroxide (H2O2) overexpression. Meanwhile, Ca2+/reactive oxygen species-associated mitochondrial dysfunction would lead to paraptosis cell death. Most importantly, cell paraptosis could be further induced and strengthened by the toxic dithiocarbamate (DTC)-copper complexes formed by the Cu2+ combined with the DTC, the metabolic products of DSF. Additionally, the released Cu2+ will be reduced by intracellular glutathione to generate Cu+, which can catalyze the H2O2 to produce a toxic hydroxyl radical by a Cu+-mediated Fenton-like reaction for inducing cell apoptosis. Both in vitro cellular assays and in vivo antitumor evaluations confirmed the cancer therapeutic efficiency by the dual ion nano trap. This study can broaden the cognition scope of dual-ion-mediated paraptosis together with apoptosis via a multifunctional nanoplatform.


Subject(s)
Breast Neoplasms , Disulfiram , Polyphenols , Humans , Female , Disulfiram/pharmacology , Copper/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Hydrogen Peroxide/metabolism , Paraptosis , Cell Line, Tumor , Apoptosis
19.
BMC Oral Health ; 24(1): 238, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355448

ABSTRACT

BACKGROUND: Facial nerve injury often results in poor prognosis due to the challenging process of nerve regeneration. Neuregulin-1, a human calmodulin, is under investigation in this study for its impact on the reparative capabilities of Dental Pulp Stem Cells (DPSCs) in facial nerve injury. METHODS: Lentivirus was used to transfect and construct Neuregulin-1 overexpressed DPSCs. Various techniques assessed the effects of Neuregulin-1: osteogenic induction, lipid induction, Reverse Transcription Polymerase Chain Reaction, Western Blot, Cell Counting Kit-8 assay, wound healing, immunofluorescence, Phalloidin staining, nerve stem action potential, Hematoxylin-eosin staining, transmission electron microscopy, and immunohistochemistry. RESULTS: Neuregulin-1 effectively enhanced the proliferation, migration, and cytoskeletal rearrangement of DPSCs, while simultaneously suppressing the expression of Ras homolog gene family member A (RhoA) and Microfilament actin (F-actin). These changes facilitated the neural differentiation of DPSCs. Additionally, in vivo experiments showed that Neuregulin-1 expedited the restoration of action potential in the facial nerve trunk, increased the thickness of the myelin sheath, and stimulated axon regeneration. CONCLUSION: Neuregulin-1 has the capability to facilitate the repair of facial nerve injuries by promoting the regenerative capacity of DPSCs. Thus, Neuregulin-1 is a significant potential gene in the reparative processes of nerve damage.


Subject(s)
Dental Pulp , Facial Nerve Injuries , Humans , Axons , Cell Differentiation , Cell Proliferation , Cells, Cultured , Facial Nerve Injuries/metabolism , Nerve Regeneration/physiology , Neuregulin-1/metabolism , Stem Cells/metabolism
20.
Pharmacogenomics J ; 24(2): 5, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378770

ABSTRACT

OBJECTIVE: To explore the role of p300 in the context of paclitaxel (PTX) resistance in triple-negative breast cancer (TNBC) cells, focusing on its interaction with the phosphoenolpyruvate carboxykinase 1 (PCK1)/adenosine monophosphate-activated protein kinase (AMPK) pathway. METHODS: The expression of p300 and PCK1 at the messenger ribonucleic acid (mRNA) level was detected using a quantitative polymerase chain reaction. The GeneCards and GEPIA databases were used to investigate the relationship between p300 and PCK1. The MDA-MB-231/PTX cell line, known for its PTX resistance, was chosen to understand the specific role of p300 in such cells. The Lipofectamine™ 3000 reagent was used to transfer the p300 small interfering RNA and the overexpression of PCK1 plasmid into MDA-MB-231/PTX. The expression levels of p300, PCK1, 5'AMPK and phosphorylated AMPK (p-AMPK) were determined using the western blot test. RESULTS: In TNBC cancer tissue, the expression of p300 was increased compared with TNBC paracancerous tissue (P < 0.05). In the MDA-MB-231 cell line of TNBC, the expression of p300 was lower than in the PTX-resistant TNBC cells (MDA-MB-231/PTX) (P < 0.05). The PCK1 expression was decreased in the TNBC cancer tissue compared with TNBC paracancerous tissue, and the PCK1 expression was reduced in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05) indicating that PCK1 was involved in the resistance function. Additionally, p-AMPK was decreased in MDA-MB-231/PTX compared with MDA-MB-231 (P < 0.05). The adenosine triphosphate (ATP) level was also detected and was significantly lower in MDA-MB-231/PTX than in MDA-MB-231 (P < 0.05). Additionally, cell proliferation increased significantly in MDA-MB-231/PTX at 48 and 72 h (P < 0.05) suggesting that MDA-MB-231/PTX cells obtained the resistance function which was associated with AMPK and ATP level. When p300 was inhibited, p-AMPK and ATP levels elevated in MDA-MB-231/PTX (P < 0.05). When PCK1 was suppressed, the ATP consumption rate decreased, and cell proliferation increased (P < 0.05). However, there were no changes in p300. CONCLUSIONS: In MDA-MB-231/PTX, p300 can inhibit p-AMPK and ATP levels by inhibiting PCK1 expression. Our findings suggest that targeting p300 could modulate the PCK1/AMPK axis, offering a potential therapeutic avenue for overcoming PTX resistance in TNBC.


Subject(s)
Paclitaxel , Triple Negative Breast Neoplasms , Humans , Adenosine Triphosphate/therapeutic use , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/therapeutic use , Cell Line, Tumor , Cell Proliferation , Intracellular Signaling Peptides and Proteins/genetics , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL