Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(68): e202303374, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37851342

ABSTRACT

We describe the preparation, dynamic, assembly characteristics of vase-shaped basket 13- along with its ability to form an inclusion complex with anticancer drug mitoxantrone in abiotic and biotic systems. This novel cavitand has a deep nonpolar pocket consisting of three naphthalimide sides fused to a bicyclic platform at the bottom while carrying polar glycines at the top. The results of 1 H Nuclear Magnetic Resonance (NMR), 1 H NMR Chemical Exchange Saturation Transfer (CEST), Calorimetry, Hybrid Replica Exchange Molecular Dynamics (REMD), and Microcrystal Electron Diffraction (MicroED) measurements are in line with 1 forming dimer [12 ]6- , to be in equilibrium with monomers 1(R) 3- (relaxed) and 1(S) 3- (squeezed). Through simultaneous line-shape analysis of 1 H NMR data, kinetic and thermodynamic parameters characterizing these equilibria were quantified. Basket 1(R) 3- includes anticancer drug mitoxantrone (MTO2+ ) in its pocket to give stable binary complex [MTO⊂1]- (Kd =2.1 µM) that can be precipitated in vitro with UV light or pH as stimuli. Both in vitro and in vivo studies showed that the basket is nontoxic, while at a higher proportion with respect to MTO it reduced its cytotoxicity in vitro. With well-characterized internal dynamics and dimerization, the ability to include mitoxantrone, and biocompatibility, the stage is set to develop sequestering agents from deep-cavity baskets.


Subject(s)
Antineoplastic Agents , Mitoxantrone , Mitoxantrone/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Magnetic Resonance Spectroscopy
2.
J Org Chem ; 88(15): 10946-10959, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37449517

ABSTRACT

Fluorinated piperidines find wide applications, most notably in the development of novel therapies and agrochemicals. Cyclization of alkenyl N-tosylamides promoted by BF3-activated aryliodine(III) carboxylates is an attractive strategy to construct 3-fluoropiperidines, but it suffers from selectivity issues arising from competitive oxoaminations and the inability to easily modulate the reactions diastereoselectivity. Herein, we report an itemized optimization of the reaction conditions carried out on both cyclic and acyclic substrates and outline the origins of substrate- and reagent-based stereo-, regio-, and chemoselectivity. Extensive mechanistic studies encompassing multinuclear NMR spectroscopy, deuterium labeling, rearrangements on stereodefined substrates, and careful structural analyses (NMR and X-ray) of the reaction products are performed. This revealed the processes and interactions crucial for achieving controlled preparation of 3-fluoropiperidines using I(III) chemistry and has provided an advanced understanding of the reaction mechanism. In brief, we propose that BF3-coordinated I(III) reagents attack C═C to produce the corresponding iodiranium(III) ion, which then undergoes diastereodetermining 5-exo-cyclization. Transiently formed pyrrolidines with an exocyclic σ-alkyl-I(III) moiety can further undergo aziridinium ion formation or reductive ligand coupling processes, which dictate not only the final product's ring size but also the chemoselectivity. Importantly, the selectivity of the reaction depends on the nature of the ligand bound to I(III) and the presence of electrolytes such as TBABF4. Reported findings will facilitate the usage of ArI(III)-dicarboxylates in the reliable construction of fluorinated azaheterocycles.

3.
Chemistry ; 28(72): e202202416, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36168151

ABSTRACT

We report Pd-catalyzed cyclotrimerization of (+)-α-bromoenone, obtained from monoterpene ß-pinene, into an enantiopure cyclotrimer. This C3 symmetric compound has three bicyclo[3.1.1]heptane rings fused to its central benzene with each ring carrying a carbonyl group. The cyclotrimer undergoes diastereoselective threefold alkynylation with the lithium salts of five terminal alkynes (41-63 %, de=4-83 %). The addition enabled a rapid synthesis of a small library of novel chiral cavitands that, in shape, resemble a tripod stand. These molecular tripods include a tris-bicycloannelated benzene head attached to three alkyne legs twisted in one direction to form a nonpolar cavity with polar groups as feet. Tripods with methylpyridinium and methylisoquinolinium legs, respectively, form inclusion complexes with anti-inflammatory and chiral drugs (R)/(S)-ibuprofen and (R)/(S)-naproxen. The mode of binding shows drug molecules docked in the cavity of the host through ion-ion, cation-π, and C-H-π contacts that, in addition of desolvation, give rise to complexes having millimolar to micromolar stability in water. Our findings open the door to creating a myriad of enantiopure tripods with tunable functions that, in the future, might give novel chemosensors, catalysts or sequestering agents.


Subject(s)
Benzene , Naproxen , Naproxen/chemistry , Ethers, Cyclic
4.
Angew Chem Int Ed Engl ; 61(41): e202211304, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35981224

ABSTRACT

In this study, we describe a synthetic method for incorporating arenes into closed tubes that we name capsularenes. First, we prepared vase-shaped molecular baskets 4-7. The baskets comprise a benzene base fused to three bicycle[2.2.1]heptane rings that extend into phthalimide (4), naphthalimide (6), and anthraceneimide sides (7), each carrying a dimethoxyethane acetal group. In the presence of catalytic trifluoroacetic acid (TFA), the acetals at top of 4, 6 and 7 change into aliphatic aldehydes followed by their intramolecular cyclization into 1,3,5-trioxane (1 H NMR spectroscopy). Such ring closure is nearly a quantitative process that furnishes differently sized capsularenes 1 (0.7×0.9 nm), 8 (0.7×1.1 nm;) and 9 (0.7×1.4 nm;) characterized by X-Ray crystallography, microcrystal electron diffraction, UV/Vis, fluorescence, cyclic voltammetry, and thermogravimetry. With exceptional rigidity, unique topology, great thermal stability, and perhaps tuneable optoelectronic characteristics, capsularenes hold promise for the construction of novel organic electronic devices.

5.
Angew Chem Int Ed Engl ; 60(47): 25075-25081, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34672062

ABSTRACT

The precise positioning of functional groups about the inner space of abiotic hosts is a challenging task and of interest for developing more effective receptors and catalysts akin to those found in nature. To address it, we herein report a synthetic methodology for preparing basket-like cavitands comprised of three different aromatics as side arms with orthogonal esters at the rim for further functionalization. First, enantioenriched A (borochloronorbornene), B (iodobromonorbornene), and C (boronorbornene) building blocks were obtained by stereoselective syntheses. Second, consecutive A-to-B and then AB-to-C Suzuki-Miyaura (SM) couplings were optimized to give enantioenriched ABC cavitand as the principal product. The robust synthetic protocol allowed us to prepare (a) an enantioenriched basket with three benzene sides and each holding either tBu, Et, or Me esters, (b) both enantiomers of a so-called "spiral staircase" basket with benzene, naphthalene, and anthracene groups surrounding the inner space, and (c) a photo-responsive basket bearing one anthracene and two benzene arms.

6.
Angew Chem Int Ed Engl ; 60(36): 19942-19948, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34125989

ABSTRACT

Two limiting cases of molecular recognition, induced fit (IF) and conformational selection (CS), play a central role in allosteric regulation of natural systems. The IF paradigm states that a substrate "instructs" the host to change its shape after complexation, while CS asserts that a guest "selects" the optimal fit from an ensemble of preexisting host conformations. With no studies that quantitatively address the interplay of two limiting pathways in abiotic systems, we herein and for the first time describe the way by which twisted capsule M-1, encompassing two conformers M-1(+) and M-1(-), trap CX4 (X=Cl, Br) to give CX4 ⊂M-1(+) and CX4 ⊂M-1(-), with all four states being in thermal equilibrium. With the assistance of 2D EXSY, we found that CBr4 would, at its lower concentrations, bind M-1 via a M-1(+)→M-1(-)→CBr4 ⊂M-1(-) pathway corresponding to conformational selection. For M-1 complexing CCl4 though, data from 2D EXSY measurements and 1D NMR line-shape analysis suggested that lower CCl4 concentrations would favor CS while the IF pathway prevailed at higher proportions of the guest. Since CS and IF are not mutually exclusive, we reason that our work sets the stage for characterizing the dynamics of a wide range of already existing hosts to broaden our fundamental understanding of their action. The objective is to master the way in which encapsulation takes place for designing novel and allosteric sequestering agents, catalysts and chemosensors akin to those found in nature.


Subject(s)
Carbon Tetrachloride/chemistry , Hydrocarbons, Brominated/chemistry , Pyridines/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation
7.
Sci Rep ; 9(1): 7016, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31064999

ABSTRACT

In this paper, we demonstrate a flexoelectro-optic liquid crystal phase-only device that uses a chiral nematic reflector to achieve full 2π phase modulation. This configuration is found to be very tolerant to imperfections in the chiral nematic reflector provided that the flexoelectro-optic LC layer fulfils the half-wave condition. Encouragingly, the modulation in the phase, which operates at kHz frame rates, is also accompanied by low amplitude modulation. The configuration demonstrated herein is particularly promising for the development of next-generation liquid crystal on silicon spatial light modulators.

8.
Opt Lett ; 43(18): 4362-4365, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30211871

ABSTRACT

We present a flexoelectro-optic liquid crystal (LC) analog phase modulator with >2π phase range at a 1 kHz switching frequency. The chiral nematic LC mixture consists of the bimesogen CBC7CB with chiral dopant R5011, aligned in the uniform lying helix mode. The mixture exhibits >±π/4 rotation of the optic axis for a drive voltage of ±21.5 V (E=±4.5 V µm-1). The rotation of the optic axis is converted into a phase modulation with the aid of a reflective device configuration incorporating a ∼5 µm LC cell, a polarizer, two quarter-wave plates, and a mirror. The residual amplitude modulation is found to be <23%. This flexoelectro-optic phase modulator combination has the potential to enable analog spatial light modulators with very fast frame rates suitable for a range of applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...