Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci Eng ; 21(2): 3037-3062, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38454718

ABSTRACT

The fatigue property of the recycled mixture affects the structural design of recycled pavement. In order to explore the effect of different reclaimed asphalt pavement (RAP) content on the fatigue properties of recycled mixtures, the fatigue properties of recycled mixtures were analyzed through an indoor fatigue test and finite element numerical simulation. Based on the phenomenological method and the dissipated energy theory, the fatigue properties of recycled mixtures with different RAP contents were analyzed and the fatigue damage of the mixtures were also studies under various strain levels. Based on the finite element numerical model of fatigue damage, the stress distribution and internal damage field distribution of trabecular specimens under different temperatures, strain levels and RAP contents were analyzed. The results showed that the anti-fatigue level of the mixture decreased as the RAP content was increased. The relative change rate of dissipated energy for different types of mixtures showed a two-stage change rule with the change of load times, that is, the value is large and decreasing, and the value is small and stable. The correlation between the plateau value (PV) and the fatigue life was established under the double logarithm coordinates, which could better analyze the influence law of the RAP content on the fatigue performance of the recycled mixture. Under different temperatures, strain levels, and RAP contents, the stress at the bottom of trabecular specimen and the overall damage field were mainly generated at the upper part under compressive stress and the bottom under tensile stress, and the damage field distribution area accounted for a small part of the whole specimen. According to the test results and fatigue damage distribution, it is recommended that the content of recycled aggregate in recycled asphalt mixtures be less than 30% to ensure good performance. The research results have important practical significance for the improvement of fatigue performance and engineering application of recycled mixtures.

2.
Materials (Basel) ; 16(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36770058

ABSTRACT

Road icing in winter brings challenges to traffic safety, and microwave heating and deicing technology is an effective method with the advantages of high efficiency and environmental protection. Magnetite has been widely used as a microwave-absorbing material in pavement. In this paper, magnetite powder formed by crushing natural magnetite and high-purity Fe3O4 powder after purification were mixed to replace mineral powder, and the magnetite aggregate was used to replace the limestone aggregate with the same particle size to enhance the asphalt mixtures' microwave absorption capacity. The effect of microwave heating time and microwave power on the heating of the asphalt mixtures was studied, and the heating performance of different thicknesses of the asphalt mixtures under microwave radiation was evaluated. The heating performance of the mixtures under different initial temperatures and ice layer thicknesses was also assessed. The results showed that the addition of the magnetite powder-Fe3O4 powder and the magnetite aggregate significantly enhanced the heating performance of the asphalt mixtures by microwave heating. The replacement of the magnetite powder-Fe3O4 powder, the microwave heating time, and the microwave power had positive effects on the heating efficiency of the asphalt mixtures. Moreover, the thinner asphalt mixtures had a better heating performance. The heating and deicing performance of the mixtures decreased with a decline in initial temperature. As the ice thickness increased, the deicing time of the specimen surface to reach 0 °C also increased.

3.
Materials (Basel) ; 15(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36556729

ABSTRACT

Microwave deicing technology, as a new environmentally friendly deicing technology, can effectively solve the problem of the frequent icing of road surfaces in the winter, which affects the safety of traffic. To improve the efficiency of microwave deicing on cement concrete pavement, this study proposed the use of magnetite, iron sulfide slag, steel slag, lead-zinc slag, and graphite as microwave-absorbing materials, and conducted microwave deicing tests under the influence of five factors, namely the form of the pavement surface structure, the content of the microwave-absorbing material, microwave power, the shielding state, and dry and wet conditions. Layer by layer, we selected the combination of pavement surface structure, microwave-absorbing material content, microwave power, shielding state, and dry and wet conditions on the bottom surface of the concrete slab with the optimal deicing effect. The results showed that the 2 cm scattered microwave-absorbing surface concrete structure has the fastest heating rate; the higher the magnetite content and microwave power, the higher the deicing efficiency; the maximum heating rate can be increased by 17.6% when the shielding layer is set at the bottom of the cement concrete slab; and the heating rate of the microwave-absorbing concrete slab in the wet state is increased by 20.8% relative to the dry state. In summary, 7000 W of power, a magnetite content of 60 vol % in the scattered microwave-absorbing surface, a shielding layer set at the bottom surface, and wet conditions can greatly improve the efficiency of microwave deicing compared with the microwave ice melting effects of plain cement concrete and other microwave-absorbing materials mixed into the concrete. In addition, the temperature uniformity of the microwave-absorbing materials is essential to improve the deicing efficiency of microwave-absorbing concrete, so it is essential to explore it further.

4.
Materials (Basel) ; 14(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920557

ABSTRACT

The sustainability of resources is presently a major global concern. Sustainable construction materials can be produced by applying biological waste to engineering. Eggshells, as biological waste, are usually dumped in landfills or discarded. This causes many environmental problems including malodor, noise pollution, and serious waste of resources. To solve these problems, this study combined eggshell waste with bitumen materials for bio-roads construction. This paper investigated the impact of biological waste eggshell powder on the high- and low-temperature characteristics of bitumen materials. Scanning electron microscopy (SEM) revealed the microstructure of eggshell powder. The interaction between eggshell powder and asphalt was analyzed using Fourier transform infrared spectroscopy (FT-IR). The high- and low-temperature characteristics were investigated using conventional performance tests, and dynamic shear rheometer (DSR) and bending beam rheometer (BBR) experiments. These results indicate that eggshell powder (1) has a rough and porous microstructure; (2) has no apparent chemical reaction with asphalt; and (3) improves the consistency, hardness, and high-temperature characteristics. However, it reduces the plastic deformation capacity of asphalt, and the low-temperature crack resistance of asphalt cannot be improved. The research demonstrated that the application of eggshell powder in asphalt is feasible and has long-term resource and environmental advantages.

5.
Materials (Basel) ; 13(6)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213840

ABSTRACT

Thermo-oxidative ageing is one of the main factors affecting bitumen performance. At present, the research on bitumen ageing has entered the micro stage. The purpose of this paper was to study the relationship between nano-morphology parameters and properties of bitumen of bitumen during the ageing process. To this end, bitumen with different ageing degrees was prepared in this paper, and Atomic force microscopy samples with different cooling rates were prepared. The relationship between ageing degree of bitumen and nano-morphology parameters was analyzed. A functional relationship model between nano-morphology parameters and properties of bitumen was established. The results show that the percentage of bee-like structure area ( P bee - like ), maximum amplitude ( H max ) and roughness ( R q ) increased with the increase of ageing degree. the percentage of bee-like structure area, the maximum amplitude and the roughness increase with the increase of cooling rate. With the increase of the percentage of bee-like structure area, the maximum amplitude and the roughness, the viscosity of bitumen at 60 °C increases, penetration decreases, and softening point increases. There is a nonlinear relationship between the nano-morphology parameters and properties of bitumen.

SELECTION OF CITATIONS
SEARCH DETAIL
...