Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Fish Shellfish Immunol ; 151: 109686, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38852787

ABSTRACT

The scavenger receptors (SRs) gene family is considered as the membrane-associated pattern recognition receptors that plays important roles in the immune responses of organisms. However, there is currently limited research on the systematic identification of the SRs gene family in teleost and their role in the innate immunity of S. schegelii. In this study, we identified and annotated 15 SRs genes in S. schegelii. Through phylogenetic analysis, analysis of conserved domains, gene structure, and motif composition, we found that SRs gene family within different classes were relatively conserved. Additionally, we used qRT-PCR to analyze the expression patterns of SRs genes in immune-related tissues from healthy and Acinetobacter johnsonii-infected S. schegelii. The results showed that SRs genes exhibited different tissue expression patterns and the expression of SRs genes significantly changed after A. johnsonii infection. These results provided a valuable basis for further understanding of the functions of SRs in the innate immune response of S. schegelii.

2.
Mol Biol Rep ; 51(1): 709, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824265

ABSTRACT

BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.


Subject(s)
Cystatins , Fish Diseases , Fish Proteins , Flatfishes , Macrophages , Vibrio , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/metabolism , Vibrio/pathogenicity , Cystatins/genetics , Cystatins/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Macrophages/metabolism , Macrophages/immunology , Fish Diseases/immunology , Fish Diseases/genetics , Fish Diseases/microbiology , Vibrio Infections/immunology , Vibrio Infections/veterinary , Vibrio Infections/genetics , NF-kappa B/metabolism , Cloning, Molecular/methods , Gene Expression Regulation
3.
Fish Shellfish Immunol ; 150: 109636, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762095

ABSTRACT

As lower vertebrates, fish have both innate and adaptive immune systems, but the role of the adaptive immune system is limited, and the innate immune system plays an important role in the resistance to pathogen infection. C-type lectins (CLRs) are one of the major pattern recognition receptors (PRRs) of the innate immune system. CLRs can combine with pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to trigger NF-κB signaling pathway and exert immune efficacy. In this study, Ssclec12b and Ssclec4e of the C-type lectins, were found to be significantly up-regulated in the transcripts of Sebastes schlegelii macrophages stimulated by bacteria. The identification, expression and function of these lectins were studied. In addition, the recombinant proteins of the above two CLRs were obtained by prokaryotic expression. We found that rSsCLEC12B and rSsCLEC4E could bind to a variety of bacteria in a Ca2+-dependent manner, and promoted the agglutination of bacteria and blood cells. rSsCLEC12B and rSsCLEC4E assisted macrophages to recognize PAMPs and activate the NF-κB signaling pathway, thereby promoting the expression of inflammatory factors (TNF-α, IL-1ß, IL-6, IL-8) and regulating the early immune inflammation of macrophages. These results suggested that SsCLEC12B and SsCLEC4E could serve as PRRs in S. schlegelii macrophages to recognize pathogens and participate in the host antimicrobial immune process, and provided a valuable reference for the study of CLRs involved in fish innate immunity.


Subject(s)
Fish Diseases , Fish Proteins , Immunity, Innate , Lectins, C-Type , Macrophages , Perciformes , Receptors, Pattern Recognition , Animals , Fish Proteins/genetics , Fish Proteins/immunology , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Macrophages/immunology , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/immunology , Receptors, Pattern Recognition/metabolism , Fish Diseases/immunology , Immunity, Innate/genetics , Perciformes/immunology , Perciformes/genetics , Gene Expression Regulation/immunology , Gene Expression Profiling/veterinary , Fishes/immunology , Fishes/genetics
4.
Fish Shellfish Immunol ; 140: 108950, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37500028

ABSTRACT

Tumor necrosis factor receptor-associated factor (TRAF) is an important structural protein, which can bind to TNF receptors and participate in the regulation of TNF signaling pathway. Nonetheless, few studies have been conducted to investigate the systematic identification of TRAF gene family in teleost and role in innate immunity of turbot (Scophthalmus maximus). In this study, eight TRAF genes, namely SmTRAF2aa, SmTRAF2ab, SmTRAF2b, SmTRAF3, SmTRAF4a, SmTRAF5, SmTRAF6 and SmTRAF7, were identified and annotated in turbot by using bioinformatics methods. Analysis of the phylogenetic, syntenic and molecular evolution demonstrated that all SmTRAF members were evolutionarily conserved in teleost. Domain analysis showed all SmTRAF proteins contained a typical conserved N-terminal RING finger domain. Most SmTRAF proteins contained a MATH domain at the C-terminal, while SmTRAF7 contains seven duplicate WD40 domains. In addition, quantitative real-time PCR was performed to detect the expression patterns of SmTRAFs in tissues from healthy and Vibrio anguillarum infected turbots. The results indicated SmTRAFs had diverse tissue expression patterns and the expression of TRAF gene changed significantly after V. anguillarum infection. This study provided a basis for understanding the roles of TRAFs in the innate immune response of turbot.


Subject(s)
Fish Diseases , Flatfishes , Vibrio Infections , Vibrio , Animals , Vibrio/physiology , Vibrio Infections/genetics , Vibrio Infections/veterinary , Gene Expression Regulation , Phylogeny , Fish Proteins/chemistry , Evolution, Molecular , Gene Expression Profiling/veterinary
5.
Fish Shellfish Immunol ; 127: 203-210, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35724846

ABSTRACT

Tumor necrosis factor receptor-associated factors (TRAFs) are signaling mediators for Toll-like receptor (TLR) and tumor necrosis factor (TNFR) superfamily that play important roles in organism immune response. However, reports on systematic identification of TRAF gene family in teleost fish and the function of TRAFs in innate immunity of black rockfish (Sebastes schlegelii) are lacked. In our study, eight TRAF genes were identified and characterized, namely, SsTRAF2a, SsTRAF2a-like, SsTRAF2b, SsTRAF3, SsTRAF4, SsTRAF5, SsTRAF6 and SsTRAF7 in S. schegelii. Furthermore, we analyzed their sequences, conserved domains, gene structures, motif compositions, phylogeny, tissue expression patterns in healthy and Vibro. anguillarum challenged individuals. All the SsTRAFs contained typical conserved domain, including C-terminal MATH domain and N-terminal RING finger domain. Analyses of gene structures and motifs showed the distribution of exon-intron and conserved motifs in S. schegelii and serval other teleost fish. We also analyzed the expression file of SsTRAFs in five immune-relate organs, liver, spleen, kidney, gill and intestine in healthy and bacterial challenged fish. The results indicated that all SsTRAF member were widely involved in immune response after pathogenic bacteria infection. In summary, the analyses of TRAFs in S. schegelii will be helpful to better understand the diverse roles of TRAF genes in the innate immune response to bacterial challenge.


Subject(s)
Fish Diseases , Perciformes , Amino Acid Sequence , Animals , Fish Proteins/chemistry , Fishes , Gene Expression Profiling/veterinary , Gene Expression Regulation , Immunity, Innate/genetics , Phylogeny , Sequence Alignment
6.
Gene ; 802: 145869, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34352298

ABSTRACT

Skeletal myoblasts are activated satellite cells capable of proliferation and differentiation. Studies on mammalian myoblast differentiation and myogenesis could be carried out in vitro thanks to the availability of mouse myoblast cell line C2C12. Lacking of muscle cell line hinders the studies of teleost fish myogenesis. Here, we established a continuous skeletal muscle cell line from juvenile rockfish (Sebastes schlegelii) muscle using explant method and subcultured more than 50 passages for over 150 days. Stable expression of myoblast-specific marker, MyoD (myoblast determination protein) and the potential of differentiation into multi-nucleated skeletal myotubes upon induction suggested the cell line were predominately composed of myoblasts. Transcriptome analysis revealed a total of 4375 genes differentially expressed at four time points after the switch to differentiation medium, which were mainly involved in proliferation and differentiation of myoblasts. KIF22 (kinesin family member 22) and POLA1 (DNA polymerase alpha 1) were identified as the key genes involved in fish myoblast proliferation whereas MYL3 (myosin light chain 3) and TNNT2 (troponin T2) were determined as the crucial genes responsible for differentiation. In all, the continuous myoblasts cultured in this study provided a cell platform for future studies on marine fish myoblast differentiation and myogenesis. The molecular process of myoblast differentiation revealed in this study will open a window into the understanding of indeterminate muscle growth of large teleost.


Subject(s)
Cell Culture Techniques , Cell Line , Muscle Development/genetics , Myoblasts, Skeletal/physiology , Perciformes/anatomy & histology , Animals , Cryopreservation , Transcriptome
7.
Fish Shellfish Immunol ; 92: 450-459, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31207302

ABSTRACT

PIK3CA has been extensively investigated from its molecular mechanism perspective and association with its mutations in different types of cancers. However, little has been reported regarding the pathological significance of PIK3CA expression in teleost. Here, in our present study, three PIK3CA genes termed SmPIK3CAa, SmPIK3CAb and SmPIK3CA-like were firstly identified in the genome of turbot S. maximus. Although these three genes located in different chromosomes, all of them share the same five domains. Phylogenetic and synteny analysis indicated that SmPIK3CAa, SmPIK3CAb and SmPIK3CA-like were three paralogs that may originate from duplication of the same ancestral PIK3CA gene. Subcellular localization analysis confirmed the cytoplasm distribution of these three paralogs. All three SmPIK3CA were ubiquitously expressed in examined tissues in turbot, with the higher expression levels in immune-related tissues such as blood, spleen, kidney, gills and intestines. Upon Vibrio anguillarum challenge, SmPIK3CAa and SmPIK3CA-like transcripts were significantly induced in spleen, intestine and blood despite of differential expression levels and responsive time points. Additionally, individuals in resistant group showed significantly higher expression level of both two genes than in the susceptible group. Moreover, four SNPs (102, 2530, 3027 and 3060) and one haplotype (Hap2) located in exon region of SmPIK3CA-like were identified and confirmed to be associated with V. anguillarum resistance in turbot by association analysis in different populations. Taken together, these results suggested that functional differentiation occurred in three SmPIK3CA paralogs with Vibrio anguillarum resistance and SmPIK3CAa and SmPIK3CA-like probable play potential roles in innate immune response to pathogenic invasions in turbot.


Subject(s)
Fish Diseases/immunology , Flatfishes/genetics , Flatfishes/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/immunology , Amino Acid Sequence , Animals , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Phosphatidylinositol 3-Kinase/chemistry , Phylogeny , Sequence Alignment/veterinary , Vibrio/physiology , Vibrio Infections/immunology , Vibrio Infections/veterinary
8.
Mol Ecol Resour ; 19(5): 1309-1321, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31077549

ABSTRACT

The black rockfish (Sebastes schlegelii) is a teleost in which eggs are fertilized internally and retained in the maternal reproductive system, where they undergo development until live birth (viviparity). In the present study, we report a chromosome-level black rockfish genome assembly. High-throughput transcriptome analysis (RNA-seq and ATAC-seq) coupled with in situ hybridization (ISH) and immunofluorescence reveal several candidate genes for maternal preparation, sperm storage and release, and hatching. We propose that zona pellucida (ZP) proteins retain sperm at the oocyte envelope, while genes in two distinct astacin metalloproteinase subfamilies serve to release sperm from the ZP and free the embryo from chorion at prehatching stage. We present a model of black rockfish reproduction, and propose that the rockfish ovarian wall has a similar function to the uterus of mammals. Together, these genomic data reveal unprecedented insights into the evolution of an unusual teleost life history strategy, and provide a sound foundation for studying viviparity in nonmammalian vertebrates and an invaluable resource for rockfish ecological and evolutionary research.


Subject(s)
Chromosomes , Evolution, Molecular , Live Birth , Perciformes/genetics , Perciformes/physiology , Animals , Computational Biology , Genomics/methods , Molecular Sequence Annotation
9.
Fish Shellfish Immunol ; 92: 11-20, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31132464

ABSTRACT

C-type lectin is a type of carbohydrate-binding protein and plays significant roles in innate immune response against pathogen infection. To date, thousands of C-type lectin had been identified in teleost. In the present study, we isolated a novel isoform of C-type lectin (OppCTL) from spotted knifejaw (Oplegnathus punctatus). The OppCTL encoded a typical Ca2+-dependent carbohydrate-binding protein, and was mainly expressed in liver in a tissue specific fashion. The expression of OppCTL was significantly up-regulated following Vibrio anguillarum infection in vivo, suggesting involvement in immune response. Hemagglutination analysis showed that the recombinant OppCTL (rOppCTL) could agglutinate erythrocyte from Mus musculus, Oplegnathus punctatus, Sebastes schlegelii and Paralichthys olivaceus. The rOppCTL could bind and agglutinate all tested bacteria. The rOppCTL possessed capacities of calcium-dependent agglutination to all tested bacteria. Sugar binding assay revealed that rOppCTL could also bind to the glycoconjugates of the bacterial surface, including lipopolysaccharide and peptidoglycan. Interestingly, Dual-luciferase analysis revealed that OppCTL could inhibit the activity of NF-κB in HEK-293T cells after OppCTL overexpression. Taken together, these results indicate that OppCTL has immune activity capable of defending invading pathogens and possesses potential immunoregulatory activity, enriching our understanding of the function of C-type lectin.


Subject(s)
Fish Diseases/immunology , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Lectins, C-Type/genetics , Lectins, C-Type/immunology , Perciformes/genetics , Perciformes/immunology , Amino Acid Sequence , Animals , Anti-Bacterial Agents/metabolism , Anti-Inflammatory Agents/metabolism , Base Sequence , Fish Proteins/chemistry , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Profiling/veterinary , Lectins, C-Type/chemistry , Phylogeny , Sequence Alignment/veterinary
10.
Fish Shellfish Immunol ; 89: 719-726, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30995543

ABSTRACT

Myeloid differentiation factor 88 (MyD88) links members of the toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) superfamily to the downstream activation of NF-κB as a "bridge" molecular in response to exogenous pathogen, but the function in spotted knifejaw (Oplegnathus. punctatus), a commercial fish in China, is still unknown. We present a functional analysis of spotted knifejaw MyD88 (OppMyD88) with a typical death domain (DD) at the N-terminus and a conservative Toll/IL-1R (TIR) domain at the C-terminus and suggest that MyD88 is important for the activation of TLR-mediated NF-κB with the synergy between domains. Subcellular localization showed that OppMyD88 was distributed in the cytoplasm in a condensed form. Tissues expression profiling analysis showed that OppMyD88 ubiquitously expressed in all tested tissues with the highest expression in the liver, as determined by real-time PCR. The expression of OppMyD88 significantly upregulated in the liver, spleen, kidney and gills within 120 h post Vibrio anguillarum infection. Moreover, we further confirmed that over-expressed OppMyD88 could also induce apoptosis. These results indicate that OppMyD88 might possess important roles in defense against microbial infection and other biological processes in spotted knifejaw similar to those in mammals, which will deepen our understandings in innate immunity of spotted knifejaw.


Subject(s)
Fish Proteins/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Myeloid Differentiation Factor 88/genetics , Perciformes/genetics , Perciformes/immunology , Signal Transduction/genetics , Animals , Bacterial Infections/immunology , Bacterial Infections/veterinary , Fish Diseases/immunology , Fish Proteins/metabolism , Gene Expression Profiling/veterinary , Myeloid Differentiation Factor 88/metabolism
11.
Fish Shellfish Immunol ; 80: 22-30, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29859305

ABSTRACT

Kunitz-type serine protease inhibitor (KSPI) interacts with serine protease (SP) to regulate cascade reactions in vivo and plays essential roles in innate immunity. Theoretical considerations support various functions of kspi, but further studies are required for full characterization of these functions. In this study, a KSPI molecule was identified from Japanese flounder (Paralichthys olivaceus), and was named Pokspi. The full-length cDNA sequence of Pokspi was 2810 nt, containing an open reading frame of 1527 nt, which encoded a polypeptide of 509 amino acid residues. PoKspi protein contained five conversed domains, namely, MANEC, PKD, LDLa and two Kunitz domains. Homology analysis revealed that Pokspi shared the highest similarity (83%) with its homolog in Cynoglossus semilaevis. Phylogenetic analysis indicated that Pokspi clustered with the homologs in other fishes. The mRNA transcripts of Pokspi were detected in all tested tissues, with the highest expression level in gill, followed by kidney and intestine. Its elevated expression in response to the application of Edwardsiella tarda (in vivo) and pathogen-associated molecular pattern (in vitro) suggested the involvement of Pokspi in the essential immune defense against various pathogens. Recombinant PoKspi (rPoKspi) purified from Escherichia coli exhibited not only serine protease inhibitor activities but also a broad spectrum of anti-microbial effect in a manner that was independent of any host factors. In addition, the recombinant PoKspi protein could cause the down-regulation of pro-inflammatory factors TNF-α and IL-1ß. In conclusion, Pokspi is a biologically active serine protease inhibitor endowed with anti-bacterial and anti-inflammatory property. This study provides strong evidences for understanding the innate immune defense in Japanese flounder.


Subject(s)
Fish Proteins/genetics , Fish Proteins/immunology , Flounder/genetics , Flounder/immunology , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/immunology , Amino Acid Sequence , Animals , Cell Line , DNA, Complementary/genetics , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/veterinary , Female , Fish Diseases/immunology , Gills/immunology , Gram-Negative Bacteria/immunology , Gram-Positive Bacteria/immunology , Immunity, Innate , Interleukin-1beta/genetics , Intestines/immunology , Kidney/immunology , Male , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...