Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Cells ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38786019

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) play an essential role in suppressing the antitumor activity of T lymphocytes in solid tumors, thus representing an attractive therapeutic target to enhance the efficacy of immunotherapy. However, the differences in protein expression between MDSCs and their physiological counterparts, particularly polymorphonuclear neutrophils (PMNs), remain inadequately characterized, making the specific identification and targeting of MDSCs difficult. PMNs and PMN-MDSCs share markers such as CD11b+CD14-CD15+/CD66b+, and some MDSC-enriched markers are emerging, such as LOX-1 and CD84. More proteomics studies are needed to identify the signature and markers for MDSCs. Recently, we reported the induced differentiation of isogenic PMNs or MDSCs (referred to as iPMNs and iMDSCs, respectively) from the human promyelocytic cell line HL60. Here, we profiled the global proteomics and membrane proteomics of these cells with quantitative mass spectrometry, which identified a 41-protein signature ("cluster 6") that was upregulated in iMDSCs compared with HL60 and iPMN. We further integrated our cell line-based proteomics data with a published proteomics dataset of normal human primary monocytes and monocyte-derived MDSCs induced by cancer-associated fibroblasts. The analysis identified a 38-protein signature that exhibits an upregulated expression pattern in MDSCs compared with normal monocytes or PMNs. These signatures may provide a hypothesis-generating platform to identify protein biomarkers that phenotypically distinguish MDSCs from their healthy counterparts, as well as potential therapeutic targets that impair MDSCs without harming normal myeloid cells.


Subject(s)
Cell Differentiation , Myeloid-Derived Suppressor Cells , Neutrophils , Proteomics , Humans , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/cytology , Neutrophils/metabolism , Neutrophils/cytology , Proteomics/methods , HL-60 Cells , Cell Line
2.
Int J Biol Macromol ; 271(Pt 2): 132526, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782317

ABSTRACT

Layer-by-Layer (LbL) assembly of polyelectrolytes on a solid core particle is a well-established technique used to deliver drugs, proteins, regenerative medicines, combinatorial therapy, etc. It is a multifunctional delivery system which can be engineered using various core template particles and coating polymers. This study reports the development and in-vitro evaluation of LbL assembled particles for non-invasive inhaled delivery to the lungs. The LbL assembled particles were prepared by successively coating polyelectrolyte macromolecules, glycol chitosan and bovine serum albumin on 0.5- and 4.5-µm polystyrene particles. The LbL assembly of polyelectrolytes was confirmed by reversible change in zeta potential and sequential increase in the particle size after accumulation of the layer. The prepared LbL particles were further assessed for aerodynamic properties using two distinct nebulizers, and toxicity assessment in normal lung cells. The in-vitro aerosolization study performed using next generation impactor coupled with Pari LC Plus and Aeroeclipse nebulizer showed that both the LbL assembled 0.5 and 4.5-µm particles had MMAD <5 µm confirming suitable aerodynamic properties for non-invasive lung delivery. The in-vitro cytotoxicity, and TEER integrity following treatment with the LbL assembled particles in normal lung epithelial and fibroblasts showed no significant cytotoxicity rendering the LbL assembled particles safe. This study extends the efficiency of LbL assembled particles for novel applications towards delivery of small and large molecules into the lungs.

3.
J Hazard Mater ; 474: 134750, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38820752

ABSTRACT

Electrocatalytic dechlorination by atomic hydrogen (H*) is efficient, but limited by the low efficiency of H* production. Herein, a phosphorus-doped cobalt nitrogen carbon catalyst (Co-NP/C) was prepared, which had high catalytic activity in a wide pH range (3-11). The turnover frequency of Co-NP/C (3.54 min-1) was 1.21-59000 times superior to that of current Pd-based and non-noble metal catalysts (0.00006-2.92 min-1). Co-NP/C significantly enhanced H* generation, which was 1.52, 2.44, and 3.77 times stronger than that of Co-N/C, NP/C, and N/C, respectively, since the introduction of phosphorus was found enhanced the electron density of cobalt and regulated the electron transfer. Co-NP/C showed outstanding catalytic performance after ten cycles and could achieve nearly complete chloramphenicol removal. This regulation method was verified to be effective for other non-noble metal (Fe, Mn, Cu, Ni) phosphorus doped catalysts, proposing a general class for efficient electrochemical dechlorination, which would be of great significance for the elimination of chlorinated organic pollutants.

4.
Sci Total Environ ; 927: 172314, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593876

ABSTRACT

Solar-driven steam evaporation technology, known for its low energy consumption and environmental friendliness, has emerged as a promising approach for seawater desalination, wastewater purification, etc. However, creating a low-cost solar evaporation system that simultaneously achieves rapid water transport, efficient light absorption, and salt tolerance remains challenging. Here, a dual-layer evaporator based on reed roots has been developed after a simple H2O2 delignification treatment and flame treatment, which exhibited enhanced water transport performance and photothermal properties. As excepted, delignification treatment enhanced the capillary water transport ability of reed roots, which is conducive to promoting the dilution of salt in the evaporator and preventing salt deposition. The evaporator demonstrates an impressive steam generation efficiency of 83.5 % and a remarkable water evaporation rate of 1.407 kg m-2 h-1 under 1 sun, thanks to its well-designed structure and optimized performance. Moreover, the evaporator exhibited excellent practical performance for outdoor applications and demonstrates a remarkable capacity for sewage purification, effectively treating heavy metal ion wastewater as well as dye wastewater. As a result, the objective of our research is to explore opportunities for the implementation of deployable, cost-effective, low-carbon-footprint solar water purification systems, particularly for some impoverished regions, to ensure the provision of high-quality water.

5.
Curr Med Imaging ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38644724

ABSTRACT

AIM: Our aim was to explore the feasibility of using radiomics data derived from intratumoral and peritumoral edema on fat-suppressed T2-weighted imaging (T2 FS) to distinguish triple-negative breast cancer (TNBC) from non-triple-negative breast cancer (non-TNBC). METHODS: This retrospective study enrolled 174 breast cancer patients. According to the MRI examination time, patients before 2021 were divided into training (n = 119) or internal test (n = 30) cohorts at a ratio of 8:2. Patients from 2022 were included in the external test cohort (n = 25). Four regions of interest for each lesion were defined: intratumoral regions, peritumoral edema regions, regions with a combination of intratumoral and peritumoral edema, and regions with a combination of intratumoral and 5-mm peritumoral. Four radiomic signatures were built using the least absolute shrinkage and selection operator (LASSO) method after selecting features. Furthermore, a radio mic-radiological model was constructed using a combination of intratumoral and peritumoral edema regions along with clinical-radiologic features. Area under the receiver operating characteristic curve (AUC) calculations, decision curve analysis, and calibration curve analysis were performed to assess the performance of each model. RESULTS: The radiomic-radiological model showed the highest AUC values of 0.906 (0.788-1.000) and 82.5 (0.622-0.947) in both the internal and external test sets, respectively. The radiology-radiomic model exhibited excellent predictive performance, as evidenced by the calibration curves and decision curve analysis. CONCLUSION: The ensemble model based on T2 FS-based radiomic features of intratumoral and peritumoral edema, along with radiological factors, performed better in distinguishing TNBC from non-TNBC than a single model. We explored the possibility of developing explainable models to support the clinical decision-making process.

6.
ACS Appl Mater Interfaces ; 16(17): 21838-21848, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634144

ABSTRACT

Iron-based materials are effective for the reductive removal of the disinfection byproduct bromate in water, while the construction of highly stable and active Fe-based materials with wide pH adaptability remains greatly challenging. In this study, highly dispersed iron phosphide-decorated porous carbon (Fe2P(x)@P(z)NC-y) was prepared via the thermal hydrolysis of Fe@ZIF-8, followed by phosphorus doping (P-doping) and pyrolysis. The reduction performances of Fe2P(x)@P(z)NC-y for bromate reduction were evaluated. Characterization results showed that the Fe, P, and N elements were homogeneously distributed in the carbonaceous matrix. P-doping regulated the coordination environment of Fe atoms and enhanced the conductivity, porosity, and wettability of the carbonaceous matrix. As a result, Fe2P(x)@P(1.0)NC-950 exhibited enhanced reactivity and stability with an intrinsic reduction kinetic constant (kint) 1.53-1.85 times higher than Fe(x)@NC-950 without P-doping. Furthermore, Fe2P(0.125)@P(1.0)NC-950 displayed superior reduction efficiency and prominent stability with very low Fe leaching (4.53-22.98 µg L-1) in a wide pH range of 4.0-10.0. The used Fe2P(0.125)@P(1.0)NC-950 could be regenerated by phosphating, and the regenerated Fe2P(0.125)@P(1.0)NC-950 maintained 85% of its primary reduction activity after five reuse cycles. The study clearly demonstrates that Fe2P-decorated porous carbon can be applied as a robust and stable Fe-based material in aqueous bromate reduction.

7.
Heliyon ; 10(8): e27959, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38655290

ABSTRACT

AURKA is a member of the serine/threonine kinase family and its kinase activity is crucial for the progression of mitosis. Recent studies have highlighted the therapeutic significance of AURKA inhibition in multiple cancer types. However, the specific mechanisms by which AURKA contributes to the progression of renal cell carcinoma (RCC) have not been fully elucidated. In this study, AURKA expression level was identified in human RCC tissues by immunohistochemical (IHC) staining. The function of AURKA on cell malignant phenotypes was evaluated in vitro after AURKA inhibition. The subcutaneous xenograft was conducted to confirm the in vivo effect of AURKA knockdown on growth of RCC cells. Finally, Co-IP, luciferase assay and ChIP experiments were performed to reveal the regulatory mechanism of AURKA on CCNB1. Our results showed a significant upregulation of AURKA in RCC tissues and cell lines, and a high AURKA expression was associated with poor prognosis. AURKA knockdown inhibited RCC cell proliferation and migration, induced cell apoptosis, and led to G1/G2 phase arrest. This effect was further confirmed by the use of an AURKA inhibitor. Mechanistically, AURKA interacted with E2F1, and subsequently recruited it to the promoter region of CCNB1. CCNB1 expression was essential for AURKA-induced RCC progression. Collectively, our results suggested that AURKA plays an important role in development of RCC via regulating CCNB1 transcription.

8.
J Environ Manage ; 355: 120460, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38430881

ABSTRACT

The practice of returning straw to agricultural fields is a globally employed technique. Such agricultural fields also receive a significant amount of nitrogen (N) and phosphorus (P) fertilizers, because these two macronutrients are essential for plant growth and development. However, the consequences of such macronutrients input on straw decomposition, soil dissolved organic matter (DOM), key microbes, and lignocellulolytic enzymes are still unclear. In a similar aim, we designed a long-term straw returning study without and with different N and P nutrient supplementation: CK (N0P0), T1 (N120P0), T2 (N120P60), T3 (N120P90), T4 (N120P120), T5 (N0P90), T6 (N60P90), and T7 (N180P90), and evaluated their impact on rice and oilseed rape yield, soil DOM, enzymes, lignocellulose content, microbial diversity, and composition. We found straw returning improved overall yield in all treatments and T7 showed the highest yield for oilseed rape (30.31-38.87 g/plant) and rice (9.14-9.91 t/ha) during five-years of study. The fertilizer application showed a significant impact on soil physicochemical properties, such as water holding capacity and soil porosity decreased, and bulk density increased in fertilized treatments, as compared to CK. Similarly, significantly low OM, cellulose, hemicellulose, and lignin content were found in T7, T4, T3, and T2, while high values were found in CK and T5, respectively. The fluorescence excitation-emission matrix spectra of DOM of different treatments revealed that T3, T7, T4, and T6 showed high peak M (microbial by-products), peak A and peak C (humic acid-like) as compared to others. The microbial composition was also distinctive in each treatment and a high relative abundance of Chloroflexi, Actinobacteriota, Ascomycota, and Basidiomycota were found in T2 and T3 treatments, respectively. These findings indicate that the decomposition of straw in the agricultural field was dependent on nutrients input, which facilitated key microbial growth and impacted positively on lignocellulolytic enzymes, which further aided the breakdown of all components of straw in the field efficiently. On the other hand, high input of chemical based fertilizers to soil can lead to several environmental issues, such as nutrient imbalance, nutrient runoff, soil pH change and changes in microbial activities. Keeping that in consideration, we recommend moderate fertilizer dosage (N120P90) in such fields to achieve higher decomposition of crop straw with a small yield compromise.


Subject(s)
Fertilizers , Oryza , Agriculture/methods , Soil/chemistry , Humic Substances , Nitrogen/analysis
9.
Sci Rep ; 14(1): 6862, 2024 03 22.
Article in English | MEDLINE | ID: mdl-38514739

ABSTRACT

This study aims to develop and validate nomogram models utilizing clinical and thoracic aorta imaging factors to assess the risk of hypertension for lung cancer screening cohorts. We included 804 patients and collected baseline clinical data, biochemical indicators, coexisting conditions, and thoracic aorta factors. Patients were randomly divided into a training set (70%) and a validation set (30%). In the training set, variance, t-test/Mann-Whitney U-test and standard least absolute shrinkage and selection operator were used to select thoracic aorta imaging features for constructing the AIScore. Multivariate logistic backward stepwise regression was utilized to analyze the influencing factors of hypertension. Five prediction models (named AIMeasure model, BasicClinical model, TotalClinical model, AIBasicClinical model, AITotalClinical model) were constructed for practical clinical use, tailored to different data scenarios. Additionally, the performance of the models was evaluated using receiver operating characteristic (ROC) curves, calibration curves and decision curve analyses (DCA). The areas under the ROC curve for the five models were 0.73, 0.77, 0.83, 0.78, 0.84 in the training set, and 0.77, 0.78, 0.81, 0.78, 0.82 in the validation set, respectively. Furthermore, the calibration curves and DCAs of both sets performed well on accuracy and clinical practicality. The nomogram models for hypertension risk prediction demonstrate good predictive capability and clinical utility. These models can serve as effective tools for assessing hypertension risk, enabling timely non-pharmacological interventions to preempt or delay the future onset of hypertension.


Subject(s)
Hypertension , Lung Neoplasms , Humans , Aorta, Thoracic , Calibration , Early Detection of Cancer , Hypertension/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Nomograms
10.
Neural Regen Res ; 19(10): 2229-2239, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38488557

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202410000-00024/figure1/v/2024-02-06T055622Z/r/image-tiff Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.

11.
CNS Neurosci Ther ; 30(2): e14594, 2024 02.
Article in English | MEDLINE | ID: mdl-38332538

ABSTRACT

BACKGROUND: With the rapidly increasing prevalence of metabolic diseases such as type 2 diabetes mellitus (T2DM), neuronal complications associated with these diseases have resulted in significant burdens on healthcare systems. Meanwhile, effective therapies have remained insufficient. A novel fatty acid called S-9-PAHSA has been reported to provide metabolic benefits in T2DM by regulating glucose metabolism. However, whether S-9-PAHSA has a neuroprotective effect in mouse models of T2DM remains unclear. METHODS: This in vivo study in mice fed a high-fat diet (HFD) for 5 months used fasting blood glucose, glucose tolerance, and insulin tolerance tests to examine the effect of S-9-PAHSA on glucose metabolism. The Morris water maze test was also used to assess the impact of S-9-PAHSA on cognition in the mice, while the neuroprotective effect of S-9-PAHSA was evaluated by measuring the expression of proteins related to apoptosis and oxidative stress. In addition, an in vitro study in PC12 cells assessed apoptosis, oxidative stress, and mitochondrial membrane potential with or without CAIII knockdown to determine the role of CAIII in the neuroprotective effect of S-9-PAHSA. RESULTS: S-9-PAHSA reduced fasting blood glucose levels significantly, increased insulin sensitivity in the HFD mice and also suppressed apoptosis and oxidative stress in the cortex of the mice and PC12 cells in a diabetic setting. By suppressing oxidative stress and apoptosis, S-9-PAHSA protected both neuronal cells and microvascular endothelial cells in in vivo and in vitro diabetic environments. Interestingly, this protective effect of S-9-PAHSA was reduced significantly when CAIII was knocked down in the PC12 cells, suggesting that CAIII has a major role in the neuroprotective effect of S-9-PAHSA. However, overexpression of CAIII did not significantly enhance the protective effect of S-9-PAHSA. CONCLUSION: S-9-PAHSA mediated by CAIII has the potential to exert a neuroprotective effect by suppressing apoptosis and oxidative stress in neuronal cells exposed to diabetic conditions. Furthermore, S-9-PAHSA has the capability to reduce fasting blood glucose and LDL levels and enhance insulin sensitivity in mice fed with HFD.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Neuroprotective Agents , Palmitic Acid , Stearic Acids , Animals , Mice , Rats , Apoptosis , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diet, High-Fat/adverse effects , Disease Models, Animal , Endothelial Cells/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress , Carbonic Anhydrase III/drug effects , Carbonic Anhydrase III/metabolism
12.
Comput Biol Med ; 171: 108125, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340439

ABSTRACT

BACKGROUND: The accurate assessment of T4 stage of pancreatic ductal adenocarcinoma (PDAC) has consistently presented a considerable difficulty for radiologists. This study aimed to develop and validate an automated artificial intelligence (AI) pipeline for the prediction of T4 stage of PDAC using contrast-enhanced CT imaging. METHODS: The data were obtained retrospectively from consecutive patients with surgically resected and pathologically proved PDAC at two institutions between July 2017 and June 2022. Initially, a deep learning (DL) model was developed to segment PDAC. Subsequently, radiomics features were extracted from the automatically segmented region of interest (ROI), which encompassed both the tumor region and a 3 mm surrounding area, to construct a predictive model for determining T4 stage of PDAC. The assessment of the models' performance involved the calculation of the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. RESULTS: The study encompassed a cohort of 509 PDAC patients, with a median age of 62 years (interquartile range: 55-67). The proportion of patients in T4 stage within the model was 16.9%. The model achieved an AUC of 0.849 (95% CI: 0.753-0.940), a sensitivity of 0.875, and a specificity of 0.728 in predicting T4 stage of PDAC. The performance of the model was determined to be comparable to that of two experienced abdominal radiologists (AUCs: 0.849 vs. 0.834 and 0.857). CONCLUSION: The automated AI pipeline utilizing tumor and peritumor-related radiomics features demonstrated comparable performance to that of senior abdominal radiologists in predicting T4 stage of PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Middle Aged , Artificial Intelligence , Retrospective Studies , Tomography, X-Ray Computed/methods , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology
13.
Sci Rep ; 14(1): 3605, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351067

ABSTRACT

In the swiftly evolving landscape of Internet of Things (IoT) technology, the demand for adaptive non-contact sensing has seen a considerable surge. Traditional human perception technologies, such as vision-based approaches, often grapple with problems including lack of sensor versatility and sub-optimal accuracy. To address these issues, this paper introduces a novel, non-contact method for human presence perception, relying on WiFi. This innovative approach involves a sequential process, beginning with the pre-processing of collected Channel State Information (CSI), followed by feature extraction, and finally, classification. By establishing signal models that correspond to varying states, this method enables the accurate perception and recognition of human presence. Remarkably, this technique exhibits a high level of precision, with sensing accuracy reaching up to 99[Formula: see text]. The potential applications of this approach are extensive, proving to be particularly beneficial in contexts such as smart homes and healthcare, amongst various other everyday scenarios. This underscores the significant role this novel method could play in enhancing the sophistication and effectiveness of human presence detection and recognition systems in the IoT era.


Subject(s)
Health Facilities , Internet , Humans , Recognition, Psychology , Technology
14.
Nanomaterials (Basel) ; 14(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38334576

ABSTRACT

New and efficient sensors of nerve agents are urgently demanded to prevent them from causing mass casualties in war or terrorist attacks. So, in this work, a novel hierarchical nanoheterostructure was synthesized via the direct growth of α-Fe2O3 nanorods onto multiwall carbon nanotube (MWCNT) backbones. Then, the composites were functionalized with hexafluoroisopropanol (HFIP) and successfully applied to detect dimethyl methylphosphonate (DMMP)-sarin simulant gas. The observations show that the HFIP-α-Fe2O3@MWCNT hybrids exhibit outstanding DMMP-sensing performance, including low operating temperature (220 °C), high response (6.0 to 0.1 ppm DMMP), short response/recovery time (8.7 s/11.9 s), as well as low detection limit (63.92 ppb). The analysis of the sensing mechanism demonstrates that the perfect sensing performance is mainly due to the synergistic effect of the chemical interaction of DMMP with the heterostructure and the physical adsorption of DMMP by hydrogen bonds with HFIP that are grafted on the α-Fe2O3@MWCNTs composite. The huge specific surface area of HFIP-α-Fe2O3@MWCNTs composite is also one of the reasons for this enhanced performance. This work not only offers a promising and effective method for synthesizing sensitive materials for high-performance gas sensors but also provides insight into the sensing mechanism of DMMP.

15.
J Matern Fetal Neonatal Med ; 37(1): 2250045, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38403928

ABSTRACT

BACKGROUND: The purpose of this study was to improve diagnostic and therapeutic standards by examining the clinical features, treatment, and prognosis of fetal meconium peritonitis (FMP), as well as the diagnostic efficacy of ultrasound for FMP. METHODS: The clinical data of 41 infants and pregnant women diagnosed with meconium peritonitis (MP) and treated at the Fujian Maternal and Child Health Hospital from January 2013 to January 2020 were analyzed retrospectively. Clinical data, imaging data, complications, treatment strategies, pregnancy outcomes, neonatal prognoses, and follow-up outcomes were all analyzed. RESULTS: The MP prenatal diagnosis rate was 56.1% (23/41), the neonatal surgery rate was 53.7% (22/41), and the survival rate was 85.4% (35/41). Intraperitoneal calcification (23 pregnant women, 56.1%), intestinal dilatation (13 pregnant women, 31.7%), peritoneal effusion (22 pregnant women, 53.7%), intraperitoneal pseudocyst (7 pregnant women, 17.1%), and polyhydramnios were diagnosed via prenatal ultrasound (18 pregnant women, 43.9%). Twenty-two pregnant women were assigned to the surgical treatment (operation) group, while 18 were assigned to the conservative treatment group. In the operation group, there were 9 cases of ileal atresia (40.9%), 7 cases of jejunal atresia (31.8%), 2 cases of atresia at the jejunum-ileum junction (9.1%), 2 cases of ileal perforation (9.1%), 1 case of ileal necrosis (4.5%), and 1 case of adhesive obstruction (4.5%). There was no statistically significant difference (p > .05) in the occurrence of various prenatal ultrasound findings by etiology. CONCLUSION: Multiple prenatal ultrasound markers have been identified for MP. To improve the efficacy of newborn treatment for FMP and reduce neonatal mortality, dynamic monitoring of ultrasound image alterations and strengthened integrated perinatal management are necessary.


Subject(s)
Intestinal Perforation , Peritonitis , Female , Humans , Infant , Infant, Newborn , Pregnancy , Intestinal Perforation/diagnostic imaging , Intestinal Perforation/surgery , Meconium , Peritonitis/diagnosis , Peritonitis/therapy , Peritonitis/etiology , Retrospective Studies , Ultrasonography, Prenatal
16.
Rheumatol Ther ; 11(1): 79-96, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37980696

ABSTRACT

INTRODUCTION: Current therapies for autoimmune rheumatic diseases (ARDs) have limited efficacy in certain patients, highlighting the need for the development of novel treatment approaches. This meta-analysis aims to assess the efficacy and safety of low-dose interleukin-2 (LD-IL-2) and evaluate the alterations in lymphocyte subsets in various rheumatic diseases following administration of different dosages of LD-IL-2. METHODS: A comprehensive search was conducted in PubMed, Web of Science, the Cochrane Library, Embase databases and CNKI to identify relevant studies. A total of 31 trials were included in this meta-analysis. The review protocols were registered on PROSPERO (CRD42022318916), and the study followed the PRISMA guidelines. RESULTS: Following LD-IL-2 treatment, patients with ARDs exhibited a significant increase in the number of Th17 cells and Tregs compared to their pre-treatment levels [standardized mean difference (SMD) = 0.50, 95% confidence interval (CI) (0.33, 0.67), P < 0.001; SMD = 1.13, 95% CI (0.97, 1.29), P < 0.001]. Moreover, the Th17/Tregs ratio showed a significant decrease [SMD = - 0.54, 95% CI (- 0.64, - 0.45), P < 0.001]. In patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), LD-IL-2 injection led to a significant increase in Treg numbers, and the Th17/Tregs ratio and disease activity scores, including Disease Activity Score-28 joints (DAS28), Systemic Lupus Erythematosus Disease Activity Index (SELENA-SLEDAI) and Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI), were all significantly reduced. No serious adverse events were reported in any of the included studies. Additionally, 54.8% of patients with lupus nephritis achieved distinct clinical remission following LD-IL-2 treatment. Injection site reactions and fever were the most common side effects of LD-IL-2, occurring in 33.1% and 14.4% of patients, respectively. CONCLUSION: LD-IL-2 treatment showed promise and was well tolerated in the management of ARDs, as it effectively promoted the proliferation and functional recovery of Tregs. TRIAL REGISTRATION: Retrospectively registered (CRD42022318916, 21/04/2022).

17.
J Periodontal Res ; 59(2): 311-324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38082497

ABSTRACT

BACKGROUND AND OBJECTIVES: Periodontitis is an immuno-inflammatory disease caused by dental plaque biofilms and inflammations. The regeneration of bone tissue in inflammatory environment is of great significance for the treatment of periodontal disease, but the specific molecular mechanism of bone formation in periodontitis still needs further exploration. The objective of this study was to identify key osteogenesis-related genes (ORGs) in periodontitis. METHODS: We used two datasets from the Gene Expression Omnibus (GEO) database to find differentially expressed mRNAs and miRNAs, further performed Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Then we predicted the downstream genes of the differentially expressed miRNAs (DEMs) by the TargetScan database and established a miRNA-mRNA regulatory network. Finally, the osteogenic mechanism of periodontitis was explored through quantitative real-time PCR (qRT-PCR) by inducing inflammatory environment and osteogenic differentiation of hPDLSCs. RESULTS: Through differential expression analysis and prediction of downstream target genes of DEMs, we created a miRNA-mRNA regulatory network consisting of 29 DEMs and 11 differentially expressed osteogenesis-related genes (DEORGs). In addition, the qRT-PCR results demonstrated that BTBD3, PLAT, AKAP12, SGK1, and GLCE expression levels were significantly upregulated, while those of TIMP3, ZCCHC14, LIN7A, DNAH6, NNT, and ITGA6 were downregulated under the dual effects of inflammatory stimulation and osteogenic induction. CONCLUSION: DEORGs might be important factors in the osteogenic phase of periodontitis, and the miRNA-mRNA network may shed light on the clarification of the role and mechanism of osteogenesis in periodontitis and contribute to the development of novel therapeutic strategies.


Subject(s)
MicroRNAs , Periodontitis , Humans , Osteogenesis/genetics , Periodontal Ligament , Stem Cells , Cell Differentiation/genetics , Periodontitis/genetics , Periodontitis/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cells, Cultured , Membrane Proteins/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/pharmacology , Nerve Tissue Proteins/metabolism
18.
Adv Healthc Mater ; 13(4): e2302537, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37742322

ABSTRACT

The colon tumor microenvironment has a high concentration of H2 S and glutathione, which is highly immunosuppressive and adverse to multiple therapeutic methodologies such as ferroptosis. Here, an engineered microbial nanohybrid based on Escherichia coli (E. coli) and Cu2 O nanoparticles to specific colon tumor therapy and immunosuppression reversion is reported. The as-prepared E. coli@Cu2 O hybrid can accumulate in tumor sites upon intravenous injection, and Cu2 O nanoparticles convert to Cux S by consuming the endogenous H2 S, which exhibits strong photothermal conversion at near-infrared II (NIR II) biological window. Furthermore, E. coli@Cu2 O is able to induce cellular ferroptosis and cuproptosis through inactivation of glutathione peroxidase 4 and aggregation of dihydrolipoamide S-acetyltransferase, respectively. Photothermal-enhanced ferroptosis/cuproptosis achieved by E. coli@Cu2 O reverses the immunosuppression of colon tumors by triggering dendritic cell maturation (about 30%) and T cell activation (about 50% CD8+ T cells). Concerted with immune checkpoint blockade, the engineered microbial nanohybrid can inhibit the growth of abscopal tumors upon NIR illumination. Overall, the designed microbial nanohybrid can achieve tumor-specific photothermal-enhanced ferroptosis/cuproptosis and immunosuppression reversion, showing promise in precise tumor therapy in future clinical translation.


Subject(s)
Colonic Neoplasms , Ferroptosis , Nanoparticles , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Escherichia coli , Immunotherapy , Colonic Neoplasms/therapy , Cell Line, Tumor , Tumor Microenvironment
20.
Stroke ; 55(2): 366-375, 2024 02.
Article in English | MEDLINE | ID: mdl-38152962

ABSTRACT

BACKGROUND: Reteplase is a more affordable new-generation thrombolytic with a prolonged half-life. We aimed to determine the safety dose range of reteplase for patients with acute ischemic stroke within 4.5 hours of onset. METHODS: This is a multicenter, prospective, randomized controlled, open-label, blinded-end point phase 2 clinical trial. Patients with acute ischemic stroke aged between 18 and 80 years who were eligible for standard intravenous thrombolysis were enrolled from 17 centers in China and randomly assigned (1:1:1) to receive intravenous reteplase 12+12 mg, intravenous reteplase 18+18 mg, or intravenous alteplase 0.9 mg/kg. The primary safety outcome was symptomatic intracranial hemorrhage (SITS definition) within 36 hours. The primary efficacy outcome was the proportion of patients with the National Institutes of Health Stroke Scale score of no more than 1 or a decrease of at least 4 points from the baseline at 14 days after thrombolysis. RESULTS: Between August 2019 and May 2021, 180 patients were randomly assigned to reteplase 12+12 mg (n=61), reteplase 18+18 mg (n=67), or alteplase (n=52). Four patients did not receive the study agent. Symptomatic intracranial hemorrhage occurred in 3 of 60 (5.0%) in the reteplase 12+12 mg group, 1 of 66 (1.5%) in the reteplase 18+18 mg group, and 1 of 50 (2.0%) in the alteplase group (P=0.53). The primary efficacy outcome in the modified intention-to-treat population occurred in 45 of 60 (75.0%) in the reteplase 12+12 mg group (odds ratio, 0.85 [95% CI, 0.35-2.06]), 48 of 66 (72.7%) in the reteplase 18+18 mg group (odds ratio, 0.75 [95% CI, 0.32-1.78]), and 39 of 50 (78.0%) in alteplase group. CONCLUSIONS: Reteplase was well tolerated in patients with acute ischemic stroke within 4.5 hours of onset in China with a similar efficacy profile to alteplase. The efficacy and appropriate dosage of reteplase for patients with acute ischemic stroke need prospective validation. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04028518.


Subject(s)
Ischemic Stroke , Tissue Plasminogen Activator , Adolescent , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , Fibrinolytic Agents/adverse effects , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/drug therapy , Ischemic Stroke/drug therapy , Recombinant Proteins , Tissue Plasminogen Activator/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...