Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 368
Filter
1.
Inorg Chem ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847596

ABSTRACT

Highly ordered periodic macroporous structures have been extensively utilized to significantly enhance the photocatalytic activity. However, constructing 3D interconnected ordered porous ternary nanostructures with highly crystalline frameworks remains a formidable challenge. Here, we introduce the design and fabrication of 3D interconnected periodic macroporous NaNbO3 (PM NaNbO3) to effectively increase the density of surface-active sites and optimize the photogenerated carrier-transfer efficiency. By incorporating Pt as a cocatalyst, PM NaNbO3 exhibits an exceptional photocatalytic hydrogen generation rate of 10.04 mmol h-1 g-1, which is approximately six and five times higher than those of calcined NaNbO3 (C-NaNbO3) and hydrothermal NaNbO3 (H-NaNbO3), respectively. This outstanding performance can be attributed to the synergistic effects arising from its well-interconnected pore architecture, large surface area, enhanced light absorption capability, and improved charge carrier separation and transport efficiency. The findings presented in this study demonstrate an innovative approach toward designing hierarchically periodic macroporous materials for solar-driven hydrogen production.

2.
Adv Mater ; : e2400670, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830613

ABSTRACT

Two-dimensional ultrathin ferroelectrics have attracted much interest due to their potential application in high-density integration of non-volatile memory devices. Recently, 2D van der Waals ferroelectric based on interlayer translation has been reported in twisted bilayer h-BN and transition metal dichalcogenides (TMDs). However, sliding ferroelectricity is not well studied in non-twisted homo-bilayer TMD grown directly by chemical vapor deposition (CVD). In this paper, for the first time, experimental observation of a room-temperature out-of-plane ferroelectric switch in semiconducting bilayer 3R MoS2 synthesized by reverse-flow CVD is reported. Piezoelectric force microscopy (PFM) hysteretic loops and first principle calculations demonstrate that the ferroelectric nature and polarization switching processes are based on interlayer sliding. The vertical Au/3R MoS2/Pt device exhibits a switchable diode effect. Polarization modulated Schottky barrier height and polarization coupling of interfacial deep states trapping/detrapping may serve in coordination to determine switchable diode effect. The room-temperature ferroelectricity of CVD-grown MoS2 will proceed with the potential wafer-scale integration of 2D TMDs in the logic circuit.

3.
Foot Ankle Surg ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38853037

ABSTRACT

BACKGROUND: Solely relying on the tibial ankle surface (TAS) angle for determining the mechanical ankle axis might be insufficient. We introduce a novel method to determine the distance from the center of the talus to the tibial axis (TTD). This study aimed to investigate the association between clinical outcomes and radiological changes before and after supramalleolar osteotomy (SMO), including TAS angle, talar tilt (TT) angle, tibiotalar surface (TTS) angle and TTD. METHODS: Seventy patients who received SMO were enrolled. Radiological changes were measured using weight-bearing anteroposterior imaging. The percentage of talar center displacement (TTDP) was calculated as the difference between postoperative and preoperative TTD, divided by talar width (TW). Clinical assessments were performed using the American Orthopedic Foot and Ankle Society ankle-hindfoot (AOFAS) scale. Differences in the aforementioned indicators before and after the operation were analyzed. We defined ΔAOFAS, ΔTAS, ΔTT and ΔTTS as the difference between postoperative and preoperative values. RESULTS: ΔTTS correlated with ΔAOFAS (r = 0.40, p = 0.008), as did TTDP (r = 0.32, p = 0.035). No correlation was observed between ΔAOFAS and ΔTAS. In the comparison between groups, patients with a TTDP greater than 26.19 exhibited a significantly greater ΔAOFAS. The high intraclass correlation coefficient indicated good reliability of the novel method. CONCLUSION: Solely relying on the TAS angle for tibial correction was insufficient. We found TTD as a novel method to evaluate mechanical ankle joint axis. TTDP and ΔTTS both positively correlated with ΔAOFAS, indicating the usefulness of these radiologic parameters.

4.
J Agric Food Chem ; 72(23): 12935-12945, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38822796

ABSTRACT

Blister beetles of Epicauta impressicornis have attracted attention because they contain a large amount of cantharidin (CTD). To date, however, the synthesis and transfer of CTD in adults of E. impressicornis are largely unknown. Here, we showed that the larvae E. impressicornis are capable of synthesizing CTD and they consume CTD during pupation. Before sexual maturity, both male and female adults synthesized a small amount of CTD, while after sexual maturity, males produced larger amounts of CTD, but females did not. The newly synthesized CTD in males first appeared in the hemolymph and then accumulated in the reproductive system. During the mating, the males transferred CTD to the reproductive system of females. In addition, a farnesyl pyrophosphate synthase (FPPS) gene was identified in male E. impressicornis. RNA-seq analysis, quantitative RT-PCR, and RNA interference analyses were conducted to investigate expression patterns and the functional roles of E. impressicornis FPPS (EiFPPS). Our results indicate that EiFPPS is highly expressed in the fat body of males. Moreover, the knock-down of EiFPPS led to a significant decrease in CTD synthesis. The current study indicates that EiFPPS is expressed in the fat body to regulate CTD synthesis in male E. impressicornis blister beetles.


Subject(s)
Cantharidin , Coleoptera , Fat Body , Geranyltranstransferase , Insect Proteins , Animals , Coleoptera/genetics , Coleoptera/metabolism , Coleoptera/enzymology , Cantharidin/metabolism , Male , Fat Body/metabolism , Fat Body/enzymology , Insect Proteins/genetics , Insect Proteins/metabolism , Geranyltranstransferase/genetics , Geranyltranstransferase/metabolism , Female , Larva/growth & development , Larva/genetics , Larva/metabolism
5.
Adv Mater ; : e2407347, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857569

ABSTRACT

Quasi-two-dimensional (2D) perovskites exhibit great potential in photodetectors due to their exceptional optoelectronic responsivity and stability, compared to their 3D counterparts. However, the defects are detrimental to the responsivity, response speed and stability of perovskite photodetectors. Herein, we propose an ultrafast photoexcsitation induced passivation technique to synergistically reduce the dimensionality at the surface and induce oxygen doping in the bulk, via tuning the photoexcitation intensity. At the optimal photoexcitation level, the excited electrons and holes generate stretching force on the Pb-I bonds at the interlayered [PbI]6 -, resulting in low dimensional perovskite formation, and the absorptive oxygen is combined with I vacancies at the same time. These two induced processes synergistically boost the carrier transport and interface contact performance. The most outstanding device exhibits a fast response speed with rise/decay time of 201 ns/627 ns, with a peak responsivity/detectivity of 163 mA·W-1/4.52 × 1010 Jones at 325 nm and the enhanced cycling stability. This work suggests the possibility of a new passivation technique for high performance 2D perovskite optoelectronics. This article is protected by copyright. All rights reserved.

6.
Angew Chem Int Ed Engl ; : e202406292, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780997

ABSTRACT

Aqueous Zn-ion batteries are an attractive electrochemical energy storage solution for their budget and safe properties. However, dendrites and uncontrolled side reactions in anodes detract the cycle life and energy density of the batteries.Grain boundaries in metals are generally considered as the source of the above problems but we present a diverse result. This study introduces an ultra-high proportion of grain boundaries on zinc electrodes through femtosecond laser bombardment to enhance stability of zinc metal/electrolyte interface.The ultra-high proportion of grain boundaries promotes the homogenization of zinc growth potential, to achieve uniform nucleation and growth, thereby suppressing dendrite formation. Additionally, the abundant active sites mitigate the side reactions during the electrochemical process. Consequently, the 15-µm-Fs-Zn||MnO2 pouch cell achieves an energy density of 249.4 Wh kg-1 and  operates for over 60 cycles at a depth-of-discharge of 23%. The recognition of the favorable influence exerted by UP-GBs paves a new way for other metal batteries.

7.
J Cancer ; 15(10): 2940-2947, 2024.
Article in English | MEDLINE | ID: mdl-38706898

ABSTRACT

Background: Three subphenotypes were identified for unresectable hepatocellular carcinoma (uHCC) after frontline transarterial chemoembolization (TACE). This study aimed to develop an individual smHAP-Ⅱ nomogram for uHCC patients after TACE. Methods: Between January 2007 to December 2016, 1517 uHCC patients undergoing TACE were included from four hospitals in China (derivation cohort: 597 cases; validation cohort: 920 cases). Multivariable Cox proportion regression analysis was used to develop a nomogram, incorporating postoperative subphenotypes (Phenotype 1, 2, 3) and HAP score (Score 0 to 4). The model was validated by a 1000-time bootstrap resampling procedure. The performance of the model was compared with existing ones by Harrell's C-index and Area Under Curve (AUC). Results: Postoperative subphenotypes modified the HAP score (smHAP-Ⅱ nomogram) was developed and validated, with the Harrell's C-index of the nomogram was 0.679 (SD: 0.029) for the derivation cohort and 0.727(SD:0.029) for the external cohort. The area under curves of the nomogram for 1-, 3-, and 5-year OS were 0.750, 0.710, and 0.732 for the derivation cohort, respectively (0.789, 0.762, and 0.715 for the external cohort). In the calibration curves stratified by treatment after TACE, the lines for re-TACE and stop-TACE cross at 0.23, indicating that patients with a 3-year predicted survival >23% would not benefit from TACE. Conclusions: The addition of postoperative subphenotypes significantly improved the prognostic performance. The smHAP-Ⅱ nomogram can be used for accurate prognostication and selection of optimal candidates for TACE, with the value to guide sequential treatment strategy.

8.
Dig Liver Dis ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734568

ABSTRACT

Intrahepatic Cholangiocarcinoma (iCCA) with FGFR alterations is relatively rare, and its identification is important in the era of targeted therapy. We collected a large series of FGFR-altered cases in the Chinese population and characterized their clinicopathological and genetic features. Among the 18 FGFR-altered cases out of 260 iCCAs, 10 were males and 8 were females, ranging in age from 35 to 74 years (mean, 57.3 years; median, 58 years). Pathologically, they include 9 cases of large duct (LD, 50 %) and small duct (SD, 50 %) types each. All of them (100 %, 18/18) showed microsatellite stable (MSS) and low tumor mutation burden (TMB). Genetically, FGFR alterations involved FGFR1 (20 %), FGFR2 (70 %), and FGFR3 (10 %), with FGFR2 rearrangement accounting for the most (11/18). The most frequently altered genes/biological processes were development/proliferation-related pathways (44 %), chromatin organization (20 %), and tumor suppressors (32 %). Our study further revealed the clinicopathological and genetic features of FGFR-altered iCCA and demonstrated that its occurrence may show regional or ethnic variability and is less common in the Chinese population. A significant number of LD-type iCCA cases also have FGFR alterations rather than the SD type.

9.
Microbiol Spectr ; 12(6): e0361723, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38624222

ABSTRACT

We conducted a comprehensive analysis of the total microbiome and transcriptionally active microbiome communities in the roots and root nodules of Prosopis cineraria, an important leguminous tree in arid regions of many Asian countries. Mature P. cineraria trees growing in the desert did not exhibit any detected root nodules. However, we observed root nodules on the roots of P. cineraria growing on a desert farm and on young plants growing in a growth chamber, when inoculated with rhizosphere soil, including with rhizosphere soil from near desert tree roots that had no nodules. Compared to nearby soil, non-nodulated roots were enriched with Actinobacteria (e.g., Actinophytocola sp.), whereas root nodules sampled from the desert farm and growth chamber had abundant Alphaproteobacteria (e.g., Ensifer sp.). These nodules yielded many microbes in addition to such nitrogen-fixing bacteria as Ensifer and Sinorhizobium species. Significant differences exist in the composition and abundance of microbial isolates between the nodule surface and the nodule endosphere. Shotgun metagenome analysis of nodule endospheres revealed that the root nodules comprised over 90% bacterial DNA, whereas metatranscriptome analysis showed that the plant produces vastly more transcripts than the microbes in these nodules. Control inoculations demonstrated that four out of six Rhizobium, Agrobacterium, or Ensifer isolates purified from P. cineraria nodules produced nodules in the roots of P. cineraria seedlings under greenhouse conditions. The best nodulation was achieved when seedlings were inoculated with a mixture of those bacterial strains. Though root nodulation could be achieved under water stress conditions, nodule number and nodule biomass increased with copious water availability. .IMPORTANCEMicrobial communities were investigated in roots and root nodules of Prosopis cineraria, a leguminous tree species in arid Asian regions that is responsible for exceptionally important contributions to soil fertility in these dramatically dry locations. Soil removed from regions near nodule-free roots on these mature plants contained an abundance of bacteria with the genetic ability to generate nodules and fix nitrogen but did not normally nodulate in their native rhizosphere environment, suggesting a very different co-evolved relationship than that observed for herbaceous legumes. The relative over-expression of the low-gene-density plant DNA compared to the bacterial DNA in the nodules was also unexpected, indicating a very powerful induction of host genetic contributions within the nodule. Finally, the water dependence of nodulation in inoculated seedlings suggested a possible link between early seedling growth (before a deep root system can be developed) and the early development of nitrogen-fixing capability.


Subject(s)
Desert Climate , Microbiota , Prosopis , Rhizosphere , Root Nodules, Plant , Soil Microbiology , Root Nodules, Plant/microbiology , Prosopis/microbiology , Prosopis/growth & development , Plant Roots/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Symbiosis , Trees/microbiology , Nitrogen Fixation , Phylogeny
10.
Mayo Clin Proc ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38661595

ABSTRACT

OBJECTIVE: To evaluate the association of 5 major cause-specific non-cardiovascular disease (CVD) and non-cancer deaths with cardiorespiratory fitness (CRF). METHODS: Patients were 36,645 men (43.3±9.3 years) free of known CVD and cancer at baseline who completed a maximal treadmill graded exercise test during a preventive examination at the Cooper Clinic (Dallas, Texas) between 1971 and 2003. CRF was quantified as maximal treadmill exercise test duration and grouped as low (referent), moderate, and high. Cause-specific non-CVD non-cancer deaths were (1) diabetes or kidney disease, (2) chronic respiratory disease, (3) acute respiratory and infectious disease, (4) injuries, and (5) other non-CVD non-cancer deaths. RESULTS: A total of 694 non-CVD non-cancer deaths occurred during an average of 17 years of follow-up. After adjustment for covariates, hazard ratios (95% confidence intervals) for moderate and high CRF, respectively, were 0.57 (0.47 to 0.69) and 0.43 (0.34 to 0.54) for overall non-CVD non-cancer deaths (P<.0001); 0.39 (0.28 to 0.54) and 0.17 (0.10 to 0.28) for diabetes or kidney disease (P<.001); 0.36 (0.22 to 0.59) and 0.09 (0.04 to 0.20) for chronic respiratory diseases (P<.001 for all); 0.74 (0.47 to 1.16) and 0.34 (0.19 to 0.61) for acute respiratory and infectious diseases (P<.01 for both); and 0.48 (0.35 to 0.66) and 0.38 (0.26 to 0.55) for any other non-CVD non-cancer deaths (P<.0001 for both). CONCLUSION: Higher levels of CRF were significantly associated with lower risk of mortality from the 5 major non-CVD non-cancer causes. These results suggest that improvement in CRF may reduce non-CVD non-cancer deaths, which account for a significant proportion of adult mortality.

11.
Anim Biotechnol ; 35(1): 2337760, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38656923

ABSTRACT

Although the knee joint (KNJ) and temporomandibular joint (TMJ) all belong to the synovial joint, there are many differences in developmental origin, joint structure and articular cartilage type. Studies of joint development in embryos have been performed, mainly using poultry and rodents. However, KNJ and TMJ in poultry and rodents differ from those in humans in several ways. Very little work has been done on the embryonic development of KNJ and TMJ in large mammals. Several studies have shown that pigs are ideal animals for embryonic development research. Embryonic day 30 (E30), E35, E45, E55, E75, E90, Postnatal day 0 (P0) and Postnatal day 30 (P30) embryos/fetuses from the pigs were used for this study. The results showed that KNJ develops earlier than TMJ. Only one mesenchymal condensate of KNJ is formed on E30, while two mesenchymal condensates of TMJ are present on E35. All structures of KNJ and TMJ were formed on E45. The growth plate of KNJ begins to develop on E45 and becomes more pronounced from E55 to P30. From E75 to E90, more and more vascular-rich cartilage canals form in the cartilage regions of both joints. The cartilaginous canal of the TMJ divides the condyle into sections along the longitudinal axis of the condyle. This arrangement of cartilaginous canal was not found in the KNJ. The chondrification of KNJ precedes that of TMJ. Ossification of the knee condyle occurs gradually from the middle to the periphery, while that of the TMJ occurs gradually from the base of the mandibular condyle. In the KNJ, the ossification of the articular condyle is evident from P0 to P30, and the growth plate is completely formed on P30. In the TMJ, the cartilage layer of condyle becomes thinner from P0 to P30. There is no growth plate formation in TMJ during its entire development. There is no growth plate formation in the TMJ throughout its development. The condyle may be the developmental center of the TMJ. The chondrocytes and hypertrophic chondrocytes of the growth plate are densely arranged. The condylar chondrocytes of TMJ are scattered, while the hypertrophic chondrocytes are arranged. Embryonic development of KNJ and TMJ in pigs is an important bridge for translating the results of rodent studies to medical applications.


Subject(s)
Knee Joint , Temporomandibular Joint , Animals , Swine/embryology , Temporomandibular Joint/embryology , Temporomandibular Joint/growth & development , Knee Joint/embryology , Knee Joint/growth & development , Cartilage, Articular/embryology , Cartilage, Articular/growth & development , Female , Embryonic Development/physiology , Embryo, Mammalian
12.
Adv Mater ; : e2400333, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652082

ABSTRACT

Wireless and wearable sensors attract considerable interest in personalized healthcare by providing a unique approach for remote, noncontact, and continuous monitoring of various health-related signals without interference with daily life. Recent advances in wireless technologies and wearable sensors have promoted practical applications due to their significantly improved characteristics, such as reduction in size and thickness, enhancement in flexibility and stretchability, and improved conformability to the human body. Currently, most researches focus on active materials and structural designs for wearable sensors, with just a few exceptions reflecting on the technologies for wireless data transmission. This review provides a comprehensive overview of the state-of-the-art wireless technologies and related studies on empowering wearable sensors. The emerging functional nanomaterials utilized for designing unique wireless modules are highlighted, which include metals, carbons, and MXenes. Additionally, the review outlines the system-level integration of wireless modules with flexible sensors, spanning from novel design strategies for enhanced conformability to efficient transmitting data wirelessly. Furthermore, the review introduces representative applications for remote and noninvasive monitoring of physiological signals through on-skin and implantable wireless flexible sensing systems. Finally, the challenges, perspectives, and unprecedented opportunities for wireless and wearable sensors are discussed.

13.
Emerg Microbes Infect ; 13(1): 2332660, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38678636

ABSTRACT

Effectiveness of heterologous booster regimes with ad5 vectored COVID-19 vaccine in a large, diverse population during the national-scale outbreak of SARS-CoV-2 omicron predominance in China has not been reported, yet. We conducted a large-scale cohort-control study in six provinces in China, and did a retrospective survey on the COVID-19 attack risk during this outbreak. Participant aged ≥18 years in five previous trials who were primed with 1 to 3 doses of ICV received heterologous booster with either intramuscular or orally inhaled ad5 vectored COVID-19 vaccine were included in the heterologous-trial cohort. We performed propensity score-matching at a ratio of 1:4 to match participants in the heterologous-trial cohort individually with the community individuals who received three-dose of ICV as a control (ICV-community cohort). From February 4 to April 10, 2023, 41504 (74.5%) of 55710 individuals completed the survey. The median time since the most recent vaccination to the onset of the symptoms of COVID-19 was 303.0 days (IQR 293.0-322.0). The attack rate of COVID-19 in the heterologous-trial cohort was 55.8%, while that in the ICV-community cohort was 64.6%, resulting in a relative effectiveness of 13.7% (95% CI 11.9 to 15.3). In addition, a higher relative effectiveness against COVID-19 associated outpatient visits, and admission to hospital was demonstrated, which was 25.1% (95% CI 18.9 to 30.9), and 48.9% (95% CI 27.0 to 64.2), respectively. The heterologous booster with ad5 vectored COVID-19 vaccine still offered some additional protection in preventing COVID-19 breakthrough infection versus homologous three-dose regimen with ICV, 10 months after vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Disease Outbreaks , Immunization, Secondary , SARS-CoV-2 , Humans , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/epidemiology , China/epidemiology , Retrospective Studies , Male , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Adult , Female , Middle Aged , Disease Outbreaks/prevention & control , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Aged , Young Adult , Vaccine Efficacy
14.
Sci Total Environ ; 926: 171834, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521258

ABSTRACT

The co-occurrence of microplastics (MPs) with potentially toxic metals in the environment stresses the need to address their physicochemical interactions and the potential ecological and human health implications. Here, we investigated the reaction of aqueous U with agricultural soil and high-density polyethylene (HDPE) through the integration of batch experiments, microscopy, and spectroscopy. The aqueous initial concentration of U (100 µM) decreased between 98.6 and 99.2 % at pH 5 and between 86.2 and 98.9 % at pH 7.5 following the first half hour of reaction with 10 g of soil. In similar experimental conditions but with added HDPE, aqueous U decreased between 98.6 and 99.7 % at pH 5 and between 76.1 and 95.2 % at pH 7.5, suggesting that HDPE modified the accumulation of U in soil as a function of pH. Uranium-bearing precipitates on the cracked surface of HDPE were identified by SEM/EDS after two weeks of agitation in water at both pH 5 and 7.5. Accumulation of U on the near-surface region of reacted HDPE was confirmed by XPS. Our findings suggest that the precipitation of U was facilitated by the weathering of the surface of HDPE. These results provide insights about surface-mediated reactions of aqueous metals with MPs, contributing relevant information about the mobility of metals and MPs at co-contaminated agricultural sites.

15.
J Cancer ; 15(7): 2066-2073, 2024.
Article in English | MEDLINE | ID: mdl-38434985

ABSTRACT

Background: There are few effective prediction models for intermediate-stage hepatocellular carcinoma (IM-HCC) patients treated with transarterial chemoembolization (TACE) to predict overall survival (OS) is available. The learning survival neural network (DeepSurv) was developed to showed a better performance than cox proportional hazards model in prediction of OS. This study aimed to develop a deep learning-based prediction model to predict individual OS. Methods: This multicenter, retrospective, cohort study examined data from the electronic medical record system of four hospitals in China between January 1, 2007, to December 31, 2016. Patients were divided into a training set(n=1075) and a test set(n=269) at a ratio of 8:2 to develop a deep learning-based algorithm (deepHAP IV). The deepHAP IV model was externally validated on an independent cohort(n=414) from the other three centers. The concordance index, the area under the receiver operator characteristic curves, and the calibration curve were used to assess the performance of the models. Results: The deepHAP IV model had a c-index of 0.74, whereas AUROC for predicting survival outcomes of 1-, 3-, and 5-year reached 0.80, 0.76, and 0.74 in the training set. Calibration graphs showed good consistency between the actual and predicted OS in the training set and the validation cohort. Compared to the other five Cox proportional-hazards models, the model this study conducted had a better performance. Patients were finally classified into three groups by X-tile plots with predicted 3-year OS rate (low: ≤ 0.11; middle: > 0.11 and ≤ 0.35; high: >0.35). Conclusion: The deepHAP IV model can effectively predict the OS of patients with IM-HCC, showing a better performance than previous Cox proportional hazards models.

16.
Appl Opt ; 63(5): 1292-1305, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38437309

ABSTRACT

Existing optical information hiding algorithms for multiple images require generating hidden keys for embedded images, resulting in the transmission of numerous keys. This challenge undermines the usage of these algorithms in low-quality networks. To address this issue and enhance transmission efficiency, we present a multi-image optical information hiding algorithm based on Fourier transformation principles, which is employed to generate hidden frequency maps and carrier frequency maps. Specific low-frequency information zones are extracted within these hidden frequency maps. A chaotic system integrates a phase mask, modulated with the low-frequency regions, positioned in the carrier frequency map's high-frequency sector. The final stego image is obtained by subjecting the carrier frequency map to inverse Fourier transformation. Experimental analysis shows that concealing three images takes only 0.0089 s, with extraction requiring 0.0658 s. Post-extraction PSNR values for hidden images exceed 32 dB. Robustness and anti-attack experiments were done to prove the security of this algorithm. The compared experiments between the proposed method and other state-of-the-art algorithms affirm the algorithm's attributes of simplicity, ease of implementation, robust security, and high efficiency. Importantly, the restoration process eliminates the necessity of transmitting hidden keys, reducing network burdens and enhancing both concealment and extraction efficiencies significantly.

17.
ACS Appl Mater Interfaces ; 16(14): 17442-17452, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38551195

ABSTRACT

Engineering targeted and reliable charge transfer pathways in multiphase photocatalysts remains a challenge. Herein, we conceptualize the Cd@CdS-ZnO/reduced graphene oxide (rGO)/ZnS heterostructures coupled with reliable carrier migration channels and visible-light response antennas by building rGO-integrated electrochemical nanoreactors and an ion-exchange process. In this ternary catalyst, the Cd clusters and rGO perform as charge relays to boost carrier transport via the Z-scheme route and accelerate photogenerated carriers to react with surface-adsorbed substances. Meanwhile, thanks to CdS, the heterostructures have photocatalytic properties under visible light illumination and can also inhibit self-corrosion by shielding Cd clusters to avoid disrupting charge transfer channels. Therefore, the special heterostructure demonstrates fascinating photocatalytic hydrogen production activity without the intervention of cocatalysts. This work provides a feasible protocol for improving the interfaces between metals and semiconductors to achieve efficient photocatalytic hydrogen generation.

18.
J Ethnopharmacol ; 327: 118016, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38462027

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Codonopsis pilosula (C. pilosula), also called "Dangshen" in Chinese, is derived from the roots of Codonopsis pilosula (Franch.) Nannf. (C. pilosula), Codonopsis pilosula var. Modesta (Nannf.) L.D.Shen (C. pilosula var. modesta) or Codonopsis pilosula subsp. Tangshen (Oliv.) D.Y.Hong (C. pilosula subsp. tangshen), is a well-known traditional Chinese medicine. It has been regularly used for anti-aging, strengthening the spleen and tonifying the lungs, regulating blood sugar, lowering blood pressure, strengthening the body's immune system, etc. However, the mechanism, by which, C. pilosula exerts its therapeutic effects on brain aging remains unclear. AIM OF THE STUDY: This study aimed to investigate the underlying mechanisms of the protective effects of C. pilosula water extract (CPWE) on the hippocampal tissue of D-galactose-induced aging mice. MATERIALS AND METHODS: In this research, plant taxonomy has been confirmed in the "The Plant List" database (www.theplantlist.org). First, an aging mouse model was established through the intraperitoneal injections of D-galactose solution, and low-, medium-, and high-dose CPWE were administered to mice by gavage for 42 days. Then, the learning and memory abilities of the mice were examined using the Morris water maze tests and step-down test. Hematoxylin and eosin staining was performed to visualize histopathological damage in the hippocampus. A transmission electron microscope was used to observe the ultrastructure of hippocampal neurons. Immunohistochemical staining was performed to examine the expression of glial fibrillary acidic protein (GFAP), the marker protein of astrocyte activation, and autophagy-related proteins, including microtubule-associated protein light chain 3 (LC3) and sequestosome 1 (SQSTM1)/p62, in the hippocampal tissues of mice. Moreover, targeted metabolomic analysis was performed to assess the changes in polar metabolites and short-chain fatty acids in the hippocampus. RESULTS: First, CPWE alleviated cognitive impairment and ameliorated hippocampal tissue damage in aging mice. Furthermore, CPWE markedly alleviated mitochondrial damage, restored the number of autophagosomes, and activated autophagy in the hippocampal tissue of aging mice by increasing the expression of LC3 protein and reducing the expression of p62 protein. Meanwhile, the expression levels of the brain injury marker protein GFAP decreased. Moreover, quantitative targeted metabolomic analysis revealed that CPWE intervention reversed the abnormal levels of L-asparagine, L-glutamic acid, L-glutamine, serotonin hydrochloride, succinic acid, and acetic acid in the hippocampal tissue of aging mice. CPWE also significantly regulated pathways associated with D-glutamine and D-glutamate metabolism, nitrogen metabolism, arginine biosynthesis, alanine, aspartate, and glutamate metabolisms, and aminoacyl-tRNA biosynthesis. CONCLUSIONS: CPWE could improve cognitive and pathological conditions induced by D-galactose in aging mice by activating autophagy and regulating metabolism, thereby slowing down brain aging.


Subject(s)
Codonopsis , Mice , Animals , Codonopsis/chemistry , Galactose , Brain , Aging , Autophagy
19.
J Phys Condens Matter ; 36(22)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38382124

ABSTRACT

The quantum anomalous Hall (QAH) insulator is a vital material for the investigation of emerging topological quantum effects, but its extremely low working temperature limits experiments. Apart from the temperature challenge, effective regulation of the topological state of QAH insulators is another crucial concern. Here, by first-principles calculations, we find a family of stable two-dimensional materials TlTiX (X = Si, Ge) are large-gap QAH insulators. Their extremely robust ferromagnetic (FM) ground states are determined by both the direct- and super-exchange FM coupling. In the absence of spin-orbit coupling (SOC), there exist a spin-polarized crossing point located at eachKandK' points, respectively. The SOC effect results in the spontaneous breaking ofC2symmetry and introduces a mass term, giving rise to a QAH state with sizable band gap. The tiny magnetocrystalline anisotropic energy (MAE) implies that an external magnetic field can be easily used to align magnetization deviating fromzdirection to thex-yplane, thereby leading to a transformation of the electronic state from the QAH state to the Weyl half semimetals state, which indicate monolayers TlTiX (X = Si, Ge) exhibit a giant magneto topological band effect. Finally, we examined the impact of stress on the band gap and MAE, which underlies the reasons for the giant magneto topological band effect attributed to the crystal field. These findings present novel prospects for the realization of large-gap QAH states with the characteristic of easily modifiable topological states.

20.
Adv Mater ; 36(19): e2313638, 2024 May.
Article in English | MEDLINE | ID: mdl-38328994

ABSTRACT

The introduction of rotational freedom by twist angles in twisted bilayer (TB) transition metal dichalcogenides (TMDCs) can tailor the inherent properties of the TMDCs, which provides a promising platform to investigate the exotic physical properties. However, direct synthesis of high-quality TB-TMDCs with full twist angles is significantly challenging due to the substantial energy barriers during crystal growth. Here, a modified chemical vapor deposition strategy is proposed to synthesize TB-WS2 with a wide twist angle range from 0° to 120°. Utilizing a tilted SiO2/Si substrate, a gas flow disturbance is generated in the furnace tube to create a heterogeneous concentration gradient of the metal precursor, which provides an extra driving force for the growth of TB-WS2. The Raman and photoluminescence results confirm a weak interlayer coupling of the TB-WS2. High-quality periodic Moiré patterns are observed in the scanning transmission electron microscopy images. Moreover, owing to the strong correlation between the nonlinear optical response and the twisted crystal structure, tunable second harmonic generation behaviors are realized in the TB-WS2. This approach opens up a new avenue for the direct growth of high-crystalline-quality and pristine TB-TMDCs and their potential applications in nonlinear optical devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...