Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-37, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38794836

ABSTRACT

Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.

2.
J Ethnopharmacol ; 323: 117655, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38158099

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Danggui Buxue Tang (DBT) has been used for over 800 years to enhance Qi and nourish Blood, and it is particularly beneficial for cancer patients. Recent research has shown that combining DBT with chemotherapy agents leads to superior anti-cancer effects, thereby enhancing therapeutic efficacy. AIM OF THE STUDY: The aim of this study was to evaluate the effectiveness of a combination therapy involving doxorubicin (DOX) and Danggui Buxue Tang (DBT) in the treatment of triple-negative breast cancer (TNBC) and to elucidate the underlying mechanisms of action. MATERIALS AND METHODS: In vitro experiments were performed using MDA-MB-231 and 4T1 cells, while in vivo experiments were carried out using MDA-MB-231 xenograft mice. The therapeutic effects of the combination therapy were evaluated using various techniques, including MTT assay, colony formation assay, flow cytometry, transwell assay, immunofluorescence, transmission electron microscopy (TEM), histological analysis, western blotting, and bioluminescence assay. RESULTS: DBT was found to enhance DOX's anti-TNBC activity in vitro by promoting ferroptosis, as evidenced by the observed mitochondrial morphological changes using TEM. The combination therapy was also found to reduce the expression of Nrf2, HO-1, and GPX4, which are all targets for ferroptosis induction, while simultaneously increasing ROS production. Additionally, the combination therapy reduced nuclear accumulation and constitutive activation of Nrf2, which is a significant cause of chemotherapy resistance and promotes cancer growth. In vivo experiments using an MDA-MB-231 xenograft animal model revealed that the combination therapy significantly reduced tumor cell proliferation and accelerated TNBC deaths by modulating the Nrf2/HO-1/GPX4 axis, with no evidence of tissue abnormalities. Moreover, the combination therapy exhibited a liver protective effect, and administration of Fer-1 was able to reduce the ROS formation produced by the DBT + DOX combination therapy. CONCLUSION: This study provides evidence that the combination therapy of DOX and DBT has the potential to treat TNBC by promoting ferroptosis through the Nrf2/HO-1/GPX4 axis.


Subject(s)
Drugs, Chinese Herbal , Ferroptosis , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/drug therapy , NF-E2-Related Factor 2 , Reactive Oxygen Species , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...