Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(23): 24864-24879, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38882147

ABSTRACT

The deep highly gassy soft coal seam has the characteristics of high ground stress, high gas pressure, and low permeability. In the process of coal roadway excavation, there are problems such as frequent gas concentration exceeding the limit and easy induction of gas dynamic disasters. To investigate the pressure relief and disaster reduction efficiency of large-diameter boreholes in a deep high-gas soft coal seam, the 8002 high-gas working face of the Wuyang coal mine was taken as the engineering background to study the deformation law of large-diameter boreholes in deep high-gas soft coal seams. A coupled damage-stress-seepage model for pressure relief of large-diameter boreholes in gas-bearing coal seams was constructed based on the Hoek-Brown criterion, the correlation between the damage area and the gas pressure distribution in the gas-bearing coal seam after the pressure relief of boreholes of different apertures was analyzed, and the pressure relief efficiency of different technical parameters "three flower holes" in the roadway head was determined. The law of stress transfer, gas migration, and energy release in the coal seam after pressure relief of a large-diameter borehole under different initial gas pressures was revealed, and the power function equations of the damage range and borehole diameter, maximum stress at the roadway head, and driving distance after pressure relief of a gas-bearing coal seam were determined. Results showed that under the confining pressure of the 8002 working face roadway in the Wuyang coal mine, the pressure relief effect of 250 mm aperture is better, the drilling plastic zone is "butterfly" or "X″-type distribution, and the plastic zone range is positively correlated with the aperture size. Under the arrangement of "three flower holes", the plastic zone is larger and the pressure relief effect is better when the hole spacing is 1.4 m. With the increase of initial gas pressure, the vertical stress above the borehole increases and the pressure relief efficiency decreases. According to the vertical stress distribution within 200 h of borehole pressure relief, the pressure relief process is divided into a coal damage and failure stage, stress balance stage, and hole collapse stability stage. The research results provide a theoretical basis for the prevention and control of coal rock gas dynamic disasters by large-diameter drilling in a deep high-gas soft coal seam.

2.
Sci Total Environ ; 931: 172809, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38679087

ABSTRACT

Tailings can be used as embankment materials instead of sand. However, they contain large amounts of heavy metal pollutants, which can lead to groundwater pollution. In this study, (lead-zinc) Pb-Zn tailings with five particle sizes and Sporosarcina pasteurii were used as test materials. Combined with the unconfined compressive strength (UCS) and leaching of heavy metal pollutants from Pb-Zn tailings, the feasibility of applying microbial induced carbonate precipitation (MICP)-treated Pb-Zn tailings to embankment materials was analysed from the perspective of strength and environmental performance. The results showed that the UCS and carbonate content of the specimens made of Pb-Zn tailings treated using MICP decreased with a decrease in the number of Pb-Zn tailing particles. The pH value of the leaching solution after MICP treatment of Pb-Zn tailings sand was stable at 7.83-8.03, and the fixation rate of metal ions was 90.28 %-100 %. FTIR, X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy tests showed that after the Pb-Zn tailings with particle sizes less than 100 mesh were treated using MICP, the number of carbonate crystals, crystal uniformity, and crystal overlap on the surface of the sample were considerably higher than those of the tailings with particle sizes greater than 250 mesh. The compressive strength and environmental performance of Pb-Zn tailings with particle sizes less than 100 mesh treated using MICP are good, and they are more suitable for embankment materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...