Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 145
Filter
1.
Sci Rep ; 14(1): 10543, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719870

ABSTRACT

With the increased use of data-driven approaches and machine learning-based methods in material science, the importance of reliable uncertainty quantification (UQ) of the predicted variables for informed decision-making cannot be overstated. UQ in material property prediction poses unique challenges, including multi-scale and multi-physics nature of materials, intricate interactions between numerous factors, limited availability of large curated datasets, etc. In this work, we introduce a physics-informed Bayesian Neural Networks (BNNs) approach for UQ, which integrates knowledge from governing laws in materials to guide the models toward physically consistent predictions. To evaluate the approach, we present case studies for predicting the creep rupture life of steel alloys. Experimental validation with three datasets of creep tests demonstrates that this method produces point predictions and uncertainty estimations that are competitive or exceed the performance of conventional UQ methods such as Gaussian Process Regression. Additionally, we evaluate the suitability of employing UQ in an active learning scenario and report competitive performance. The most promising framework for creep life prediction is BNNs based on Markov Chain Monte Carlo approximation of the posterior distribution of network parameters, as it provided more reliable results in comparison to BNNs based on variational inference approximation or related NNs with probabilistic outputs.

2.
Front Genet ; 15: 1394636, 2024.
Article in English | MEDLINE | ID: mdl-38737126

ABSTRACT

Introduction: Xinjiang Brown cattle constitute the largest breed of cattle in Xinjiang. Therefore, it is crucial to establish a genomic evaluation system, especially for those with low levels of breed improvement. Methods: This study aimed to establish a cross breed joint reference population by analyzing the genetic structure of 485 Xinjiang Brown cattle and 2,633 Chinese Holstein cattle (Illumina GeneSeek GGP bovine 150 K chip). The Bayes method single-step genome-wide best linear unbiased prediction was used to conduct a genomic evaluation of the joint reference population for the milk traits of Xinjiang Brown cattle. The reference population of Chinese Holstein cattle was randomly divided into groups to construct the joint reference population. By comparing the prediction accuracy, estimation bias, and inflation coefficient of the validation population, the optimal number of joint reference populations was determined. Results and Discussion: The results indicated a distinct genetic structure difference between the two breeds of adult cows, and both breeds should be considered when constructing multi-breed joint reference and validation populations. The reliability range of genome prediction of milk traits in the joint reference population was 0.142-0.465. Initially, it was determined that the inclusion of 600 and 900 Chinese Holstein cattle in the joint reference population positively impacted the genomic prediction of Xinjiang Brown cattle to certain extent. It was feasible to incorporate the Chinese Holstein into Xinjiang Brown cattle population to form a joint reference population for multi-breed genomic evaluation. However, for different Xinjiang Brown cattle populations, a fixed number of Chinese Holstein cattle cannot be directly added during multi-breed genomic selection. Pre-evaluation analysis based on the genetic structure, kinship, and other factors of the current population is required to ensure the authenticity and reliability of genomic predictions and improve estimation accuracy.

3.
Anim Genet ; 55(3): 457-464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38622758

ABSTRACT

The common deleterious genetic defects in Holstein cattle include haplotypes 1-6 (HH1-HH6), haplotypes for cholesterol deficiency (HCD), bovine leukocyte adhesion deficiency (BLAD), complex vertebral malformation (CVM) and brachyspina syndrome (BS). Recessive inheritance patterns of these genetic defects permit the carriers to function normally, but homozygous recessive genotypes cause embryo loss or neonatal death. Therefore, rapid detection of the carriers is essential to manage these genetic defects. This study was conducted to develop a single-tube multiplex fluorescent amplification-refractory mutation system (mf-ARMS) PCR method for efficient genotyping of these 10 genetic defects and to compare its efficiency with the kompetitive allele specific PCR (KASP) genotyping assay. The mf-ARMS PCR method introduced 10 sets of tri-primers optimized with additional mismatches in the 3' end of wild and mutant-specific primers, size differentiation between wild and mutant-specific primers, fluorescent labeling of universal primers, adjustment of annealing temperatures and optimization of primer concentrations. The genotyping of 484 Holstein cows resulted in 16.12% carriers with at least one genetic defect, while no homozygous recessive genotype was detected. This study found carrier frequencies ranging from 0.0% (HH6) to 3.72% (HH3) for individual defects. The mf-ARMS PCR method demonstrated improved detection, time and cost efficiency compared with the KASP method for these defects. Therefore, the application of mf-ARMS PCR for genotyping Holstein cattle is anticipated to decrease the frequency of lethal alleles and limit the transmission of these genetic defects.


Subject(s)
Genotyping Techniques , Animals , Cattle/genetics , Genotyping Techniques/veterinary , Genotyping Techniques/methods , Cattle Diseases/genetics , Multiplex Polymerase Chain Reaction/veterinary , Genotype , Polymerase Chain Reaction/veterinary , Mutation
4.
Heliyon ; 10(7): e28665, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586355

ABSTRACT

Background: This study analyzed the laboratory diagnosis results and drug resistance of patients infected with non-tuberculous mycobacterium (NTM). Methods: We collected information on patients with positive indicators of NTM infection at the Henan Provincial Chest Hospital from 2020 to 2022. Acid-fast smear, mycobacterium culture, QB-SPOT assay, GeneXpert MTB/RIF assay, immunoglobulin E test, tuberculosis antibody test, and microplate method for drug sensitivity test were analyzed using strain identification as the gold standard. Results: The 242 cases of NTM infection were predominantly detected with slow-growing mycobacteria (a detection rate of 87.19%), among which Mycobacterium intracellulare (66.53%), Mycobacterium avium (15.70%), and Mycobacterium chelonei/abscessus complex (11.16%) ranked the top three in terms of the isolation rate. Males patients accounted for a higher proportion (58.26%) than females (41.74%), and the majority of them were over 60 years (50.83%). Among laboratory tests for patients with NTM infection, mycobacterium culture showed a highest detected rate (87.20%) among laboratory tests. The results of the drug sensitivity test demonstrated that the resistance rate of NTM was generally high. Moreover, the Mycobacterium avium complex with the highest isolation rate showed 100% resistant to doxycycline and minocycline, but exhibited relatively high sensitivity to moxifloxacin (a resistance rate of 7.89%) and rifabutin (a resistance rate of 13.16%). The Mycobacterium chelonei/abscessus complex was 100% resistant to doxycycline and relatively sensitive to cefoxitin (29.17%) and clarithromycin (37.50%). Conclusion: The NTM species isolated by the Henan Provincial Chest Hospital is dominated by Mycobacterium intracellulare and the highest positive rate is detected by mycobacterium culture among laboratory tests. NTM infection generally exhibits a high rate of drug resistance. Accordingly, the accurate diagnosis of NTM diseases requires enhanced drug sensitivity testing to provide patients with targeted combination drug treatment.

5.
J Dairy Sci ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38428498

ABSTRACT

Hematological parameters refer to the assessment of changes in the number and distribution of blood cells, including leukocytes (LES), erythrocytes (ERS), and platelets (PLS), which are essential for the early diagnosis of hematological system disorders and other systemic diseases in livestock. In this context, the primary objectives of this study were to investigate the genomic background of 19 hematological parameters in Holstein cattle, focusing on LES, ERS, and PLS blood components. Genetic and phenotypic (co)variances of hematological parameters were calculated based on the Average Information Restricted Maximum Likelihood (AIREML) method and 1,610 genotyped individuals and 5,499 hematological parameter records from 4,543 cows. Furthermore, we assessed the genetic relationship between these hematological parameters and other economically important traits in dairy cattle breeding programs. We also carried out genome-wide association studies and candidate gene analyses. Blood samples from 21 primiparous cows were used to identify candidate genes further through RNA sequencing (RNA-seq) analyses. Hematological parameters generally exhibited low-to-moderate heritabilities ranging from 0.01 to 0.29, with genetic correlations between them ranging from -0.88 ± 0.09 (between mononuclear cell ratio and lymphocyte cell ratio) to 0.99 ± 0.01 (between white blood cell count and granulocyte cell count). Furthermore, low to moderate approximate genetic correlations between hematological parameters with one longevity, 4 fertility, and 5 health traits were observed. One-hundred-and-99 significant single nucleotide polymorphisms (SNP) located primarily on the Bos taurus autosomes (BTA) BTA4, BTA6, and BTA8 were associated with 16 hematological parameters. Based on the RNA-seq analyses, 6,687 genes were significantly downregulated and 4,119 genes were upregulated when comparing 2 groups of cows with high and low phenotypic values. By integrating genome-wide association studies (GWAS), RNA-seq, and previously published results, the main candidate genes associated with hematological parameters in Holstein cattle were ACRBP, ADAMTS3, CANT1, CCM2L, CNN3, CPLANE1, GPAT3, GRIP2, PLAGL2, RTL6, SOX4, WDFY3, and ZNF614. Hematological parameters are heritable and moderately to highly genetically correlated among themselves. The large number of candidate genes identified based on GWAS and RNA-seq indicate the polygenic nature and complex genetic determinism of hematological parameters in Holstein cattle.

6.
Liver Cancer ; 13(1): 41-55, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344447

ABSTRACT

Introduction: A set of genetic mutations to classify hepatocellular carcinoma (HCC) useful to clinical studies is an unmet need. Hepatitis B virus-related HCC (HBV-HCC) harbors a unique genetic mutation, namely, the HBV integration, among other somatic endogenous gene mutations. We explored a combination of HBV DNA integrations and common somatic mutations to classify HBV-HCC by using a capture-sequencing platform. Methods: A total of 153 HBV-HCCs after surgical resection were subjected to capture sequencing to identify HBV integrations and three common somatic mutations in genomes. Three mutually exclusive mutations, HBV DNA integration into the TERT promoter, HBV DNA integration into MLL4, or TERT promoter point mutation, were identified in HBV-HCC. Results: They were used to classify HBV-HCCs into four groups: G1 with HBV-TERT integration (25.5%); G2 with HBV-MLL4 integration (10.5%); G3 with TERT promoter mutation (30.1%); and G4 without these three mutations (34.0%). Clinically, G3 has the highest male-to-female ratio, cirrhosis rate, and associated with higher early recurrence and mortality after resection, but G4 has the best outcome. Transcriptomic analysis revealed a grouping different from the published ones and G2 with an active immune profile related to immune checkpoint inhibitor response. Analysis of integrated HBV DNA provided clues for HBV genotype and variants in carcinogenesis of different HCC subgroup. This new classification was also validated in another independent cohort. Conclusion: A simple and robust genetic classification was developed to aid in understanding HBV-HCC and in harmonizing clinical studies.

7.
J Dairy Sci ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38395401

ABSTRACT

As the stress-inducible isoform of the Heat Shock Protein 90 (HSP90), the HSP90AA1 gene encodes HSP90α and plays an important role in heat stress (HS) response. Therefore, this study aimed to investigate the role of the HSP90AA1 gene in cellular responses during HS and to identify functional single nucleotide polymorphisms (SNP) associated with thermotolerance in Holstein cattle. For the in vitro validation experiment of acute HS, cells from the Madin-Darby bovine kidney (MDBK) cell line were exposed to 42°C for 1 h, and various parameters were assessed, including cell apoptosis, cell autophagy, and the cellular functions of HSP90α by using its inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). Furthermore, the polymorphisms identified in the HSP90AA1 gene and their functions related to HS were in vitro validated. Acute HS exposure induced cell apoptosis, cell autophagy, and upregulated expression of the HSP90AA1 gene. Inhibition of HSP90α by 17-AAG treatment had a significant effect on the expression of the HSP90α protein (P < 0.05) and increased cell apoptosis. However, autophagy decreased in comparison to the control treatment when cells were exposed to 42°C for 1 h. Five SNPs identified in the HSP90AA1 gene were significantly associated with rectal temperature (RT; P < 0.05) and respiration score (RS; P < 0.05) in Holstein cows, in which the rs109256957 SNP is located in the 3' untranslated region (3' UTR). Furthermore, we demonstrated that the 3' UTR of HSP90AA1 is a direct target of bta-miR-1224 by cell transfection with exogenous miRNA mimic and inhibitor. The luciferase assays revealed that the SNP rs109256957 affects the regulation of bta-miR-1224 binding activity and alters the expression of the HSP90AA1 gene. Heat stress-induced HSP90AA1 expression maintains cell survival by inhibiting cell apoptosis and increasing cell autophagy. The rs109256957 SNP located in the 3' UTR region is a functional variation and it affects the HSP90AA1 expression by altering its binding activity with bta-miR-1224, thereby associating with the physiological parameters of Holstein cows.

8.
Mol Biol Evol ; 41(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38266195

ABSTRACT

The cross-species characterization of evolutionary changes in the functional genome can facilitate the translation of genetic findings across species and the interpretation of the evolutionary basis underlying complex phenotypes. Yet, this has not been fully explored between cattle, sheep, goats, and other mammals. Here, we systematically characterized the evolutionary dynamics of DNA methylation and gene expression in 3 somatic tissues (i.e. brain, liver, and skeletal muscle) and sperm across 7 mammalian species, including 3 ruminant livestock species (cattle, sheep, and goats), humans, pigs, mice, and dogs, by generating and integrating 160 DNA methylation and transcriptomic data sets. We demonstrate dynamic changes of DNA hypomethylated regions and hypermethylated regions in tissue-type manner across cattle, sheep, and goats. Specifically, based on the phylo-epigenetic model of DNA methylome, we identified a total of 25,074 hypomethylated region extension events specific to cattle, which participated in rewiring tissue-specific regulatory network. Furthermore, by integrating genome-wide association studies of 50 cattle traits, we provided novel insights into the genetic and evolutionary basis of complex phenotypes in cattle. Overall, our study provides a valuable resource for exploring the evolutionary dynamics of the functional genome and highlights the importance of cross-species characterization of multiomics data sets for the evolutionary interpretation of complex phenotypes in cattle livestock.


Subject(s)
Cattle , DNA Methylation , Goats , Sheep , Animals , Cattle/genetics , Dogs , Humans , Male , Mice , Genome-Wide Association Study , Goats/genetics , Multifactorial Inheritance , Sheep/genetics , Swine
9.
J Dairy Sci ; 107(3): 1535-1548, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37690717

ABSTRACT

Disease-related milk losses directly affect dairy herds' profitability and the production efficiency of the dairy industry. Therefore, this study aimed to quantify phenotypic variability in milk fluctuation periods related to diseases and to explore milk fluctuation traits as indicators of disease resilience. By combining high-frequency daily milk yield data with disease records of cows that were treated and recovered from the disease, we estimated milk variability trends within a fixed period around the treatment day of each record for 5 diseases: udder health, reproductive disorders, metabolic disorders, digestive disorders, and hoof health. The average milk yield decreased rapidly from 6 to 8 d before the treatment day for all diseases, with the largest milk reduction observed on the treatment day. Additionally, we assessed the significance of milk fluctuation periods highly related to diseases by defining milk fluctuations as a period of at least 10 consecutive days in which milk yield fell below 90% of the expected milk production values at least once. We defined the development and recovery phases of milk fluctuations using 3,847 milk fluctuation periods related to disease incidences, and estimated genetic parameters of milk fluctuation traits, including milk losses, duration of the fluctuation, variation rate in daily milk yield, and standard deviation of milk deviations for each phase and their genetic correlation with several important traits. In general, the disease-related milk fluctuation periods lasted 21.19 ± 10.36 d with a milk loss of 115.54 ± 92.49 kg per lactation. Compared with the development phase, the recovery phase lasted an average of 3.3 d longer, in which cows produced 11.04 kg less milk and exhibited a slower variation rate in daily milk yield of 0.35 kg/d. There were notable differences in milk fluctuation traits depending on the disease, and greater milk losses were observed when multiple diseases occurred simultaneously. All milk fluctuation traits evaluated were heritable with heritability estimates ranging from 0.01 to 0.10, and moderate to high genetic correlations with milk yield (0.34 to 0.64), milk loss throughout the lactation (0.22 to 0.97), and resilience indicator (0.39 to 0.95). These results indicate that cows with lower milk losses and higher resilience tend to have more stable milk fluctuations, which supports the potential for breeding for more disease-resilient cows based on milk fluctuation traits. Overall, this study confirms the high effect of diseases on milk yield variability and provides insightful information about their relationship with relevant traits in Holstein cattle. Furthermore, this study shows the potential of using high-frequency automatic monitoring of milk yield to assist on breeding practices and health management in dairy cows.


Subject(s)
Milk , Resilience, Psychological , Female , Cattle , Animals , Lactation , Mammary Glands, Animal , Phenotype
10.
Opt Express ; 31(24): 40538-40556, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041352

ABSTRACT

During retinal microsurgery, excessive interaction force between surgical instruments and intraocular tissue can cause serious accidents such as tissue injury, irreversible retinal damage, and even vision loss. It is essential to accurately sense the micro tool-tissue interaction force, especially for the Ophthalmic Microsurgery Robot. In this study, a fiber Bragg grating (FBG) three-dimensional (3-D) micro-force sensor for micro-forceps is proposed, which is integrated with the drive module as an end-effector and can be conveniently mounted onto the ophthalmic surgical robot. An innovative axial force sensitivity-enhancing structure is proposed based on the principles of flexure-hinge and flexible levers to overcome the low sensitivity of axial force measurement. A dual-grating temperature compensation method is adopted for axial force measurement, which considers the differential temperature sensitivity of the two FBGs. Three FBGs are arranged along the circumference of the guide tube in this study to measure transverse forces and compensate for effects caused by changes in temperature. The experimental results demonstrate that the micro-forceps designed in this study achieved a resolution of 0.13 mN for transverse force and 0.30 mN for axial force. The temperature compensation experiments show that the 3-D micro-force sensor can simultaneously compensate for temperature effects in axial and transverse force measurement.

11.
Sci Rep ; 13(1): 22681, 2023 12 19.
Article in English | MEDLINE | ID: mdl-38114592

ABSTRACT

In rehabilitation medicine, real-time analysis of the gait for human wearing lower-limb exoskeleton rehabilitation robot during walking can effectively prevent patients from experiencing excessive and asymmetric gait during rehabilitation training, thereby avoiding falls or even secondary injuries. To address the above situation, we propose a gait detection method based on computer vision for the real-time monitoring of gait during human-machine integrated walking. Specifically, we design a neural network model called GaitPoseNet, which is used for posture recognition in human-machine integrated walking. Using RGB images as input and depth features as output, regression of joint coordinates through depth estimation of implicit supervised networks. In addition, joint guidance strategy (JGS) is designed in the network framework. The degree of correlation between the various joints of the human body is used as a detection target to effectively overcome prediction difficulties due to partial joint occlusion during walking. Finally, a post processing algorithm is designed to describe patients' walking motion by combining the pixel coordinates of each joint point and leg length. Our advantage is that we provide a non-contact measurement method with strong universality, and use depth estimation and JGS to improve measurement accuracy. Conducting experiments on the Walking Pose with Exoskeleton (WPE) Dataset shows that our method can reach 95.77% PCKs@0.1, 93.14% PCKs@0.08 and 3.55 ms runtime. Therefore our method achieves advanced performance considering both speed and accuracy.


Subject(s)
Deep Learning , Exoskeleton Device , Humans , Gait Analysis , Gait , Walking , Biomechanical Phenomena
12.
Opt Express ; 31(23): 38268-38287, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-38017937

ABSTRACT

A fiber Bragg grating (FBG) based three-dimensional (3D) force sensor for a humanoid prosthetic hand is designed, which can precisely detect 3D force and compensate for ambient temperature. FBG was encapsulated in polydimethylsiloxane (PDMS) for force sensitization and immobilization, and the structural parameters of the sensor were optimized by using finite element simulation, so that its sensitivity to 3D force is enhanced. In the meantime, the calibration experiments for normal force fZ, shear force fX/fY, and temperature were conducted, and the 3D force data were decoupled using the least square (LS) and backpropagation (BP) neural networks decoupling methods, so that an overall decoupling error is 0.038. The results show that the sensor has a simple structure, high sensitivity, high linearity, good creep resistance, and rapid decoupling, providing a successful design for the 3D force detection of a humanoid prosthetic hand.


Subject(s)
Hand , Neural Networks, Computer , Calibration , Computer Simulation , Temperature
13.
Animals (Basel) ; 13(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003156

ABSTRACT

Ovum pick up and in vitro embryo production (OPU-IVEP) is an essential technique in the dairy industry. The production efficiency of OPU-IVEP is significantly influenced by various factors, and phenotypic and genetic characteristics are highly variable in different populations. The objectives of this study were (1) to reveal the phenotypic characteristics, including population distribution, and impacts of donor age and month on in vitro embryo production and (2) to estimate genetic parameters for five in vitro embryo production traits in Chinese Holstein cattle. A total of 7311 OPU-IVEP records of 867 Holstein heifers from August 2021 to March 2023 were collected in this study. Five in vitro embryo production traits were defined, including the number of cumulus-oocyte complexes (NCOC), the number of cleaved embryos (NCLV), the number of grade I embryos (NGE), and the proportion of NCLV to NCOC (PCLV) and NGE to NCOC (PGE). A univariate repeatability animal model was employed to estimate heritability and repeatability, and a bivariate repeatability animal model was employed to estimate the genetic correlations among five in vitro embryo production traits. It was found that the in vitro embryo production traits were significantly influenced by season, as the NGE and PGE were significantly decreased from June to August. In addition, the production efficiency of OPU-IVEP was also influenced by donor age. On the observed scale, the estimates of heritability were 0.33 for NCOC, 0.24 for NCLV, 0.16 for NGE, 0.06 for PCLV, and 0.10 for PGE, respectively. On the log-transformed scale, the estimates of heritability of NCOC, NCLV, and NGE were 0.34, 0.18, and 0.13. The genetic correlations among NCOC, NCLV, and NGE ranged from 0.61 (NCLV and NGE) to 0.95 (NCOC and NCLV), considering both scales. However, there were low genetic correlations between NCOC and proportion traits (PCLV and PGE) on both the observed scale and the log-transformed scale. In the end, the variation in Chinese Holstein cattle was found to be considerable. The EBV value and average NCOC, NGE, and PGE for the top 10% donors presented extreme differences to those for the bottom 10% donors for NCOC (24.02 versus 2.60), NGE (3.42 versus 0.36), and PGE (30.54% versus 3.46%). Overall, the results of this study reveal that in vitro embryo production traits are heritable with low to high heritability, and the count traits (NCOC, NCLV, and NGE) and proportion traits (PCLV and PGE) reflect different aspects of in vitro embryo production and should be incorporated into genetic selection for improving the embryo production efficiency of dairy cattle.

14.
Int J Mol Sci ; 24(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37569258

ABSTRACT

Gene expression in cells is determined by the epigenetic state of chromatin. Therefore, the study of epigenetic changes is very important to understand the regulatory mechanism of genes at the molecular, cellular, tissue and organ levels. DNA methylation is one of the most studied epigenetic modifications, which plays an important role in maintaining genome stability and ensuring normal growth and development. Studies have shown that methylation levels in bovine primordial germ cells, the rearrangement of methylation during embryonic development and abnormal methylation during placental development are all closely related to their reproductive processes. In addition, the application of bovine male sterility and assisted reproductive technology is also related to DNA methylation. This review introduces the principle, development of detection methods and application conditions of DNA methylation, with emphasis on the relationship between DNA methylation dynamics and bovine spermatogenesis, embryonic development, disease resistance and muscle and fat development, in order to provide theoretical basis for the application of DNA methylation in cattle breeding in the future.


Subject(s)
DNA Methylation , Placenta , Animals , Cattle , Male , Female , Pregnancy , Epigenesis, Genetic , Muscles , Gene Expression
15.
Animals (Basel) ; 13(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37444006

ABSTRACT

Enhancing the immune response through breeding is regarded as an effective strategy for improving animal health, as dairy cattle identified as high immune responders are reported to have a decreased prevalence of economically significant diseases. The identification of differentially expressed genes (DEGs) associated with immune responses might be an effective tool for breeding healthy dairy cattle. In this study, antibody-mediated immune responses (AMIRs) were induced by the immunization of hen egg white lysozyme (HEWL) in six Chinese Holstein dairy bulls divided into high- and low-AMIR groups based on their HEWL antibody level. Then, RNA-seq was applied to explore the transcriptome of peripheral whole blood between the two comparison groups. As a result, several major upregulated and downregulated genes were identified and attributed to the regulation of locomotion, tissue development, immune response, and detoxification. In addition, the result of the KEGG pathway analysis revealed that most DEGs were enriched in pathways related to disease, inflammation, and immune response, including antigen processing and presentation, Staphylococcus aureus infection, intestinal immune network for IgA production, cytokine-cytokine receptor interaction, and complement and coagulation cascades. Moreover, six genes (BOLA-DQA5, C5, CXCL2, HBA, LTF, and COL1A1) were validated using RT-qPCR, which may provide information for genomic selection in breeding programs. These results broaden the knowledge of the immune response mechanism in dairy bulls, which has strong implications for breeding cattle with an enhanced AMIR.

16.
J Agric Food Chem ; 71(31): 11902-11920, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37490609

ABSTRACT

Heat stress (HS) negatively influences cows' welfare and productivity. Therefore, a better understanding of the physiological and molecular mechanisms of HS responses from multiple parities is paramount for the development of effective management and breeding strategies. In comparison with first-parity cows in the spring (Spring-1), first-parity cows in the summer (Summer-1) had a significantly higher rectal temperature (RT), respiration rate (RR), drooling score (DS), and daily activity (DA), while lower (P < 0.05) daily rumination (DR), seven-day average milk yield (7AMY), milk yield on sampling day (MY_S), milk yield on test day (MY_T), and lactose percentage (LP) were observed. When comparing the spring (Spring-2) and summer (Summer-2) of the second-parity cows, significant differences were also found in RT, RR, DS, DA, and DR (P < 0.05), corresponding to similar trends with the first parity while having smaller changes. Moreover, significantly negative impacts on performance traits were only observed on fat percentage (FP) and LP. These results showed that there were different biological responses between first- and second-parity Holstein cows. Further, 18 and 17 metabolites were involved in the seasonal response of first- and second-parity cows, respectively. Nine differential metabolites were shared between the two parities, and pathway analyses suggested that cows had an inhibited tricarboxylic acid cycle, increased utilization of lipolysis, and a dysregulated gut microbiome during the summer. The metabolites identified exclusively for each parity highlighted the differences in microbial response and host amino acid metabolism between two parities in response to HS. Moreover, glucose, ethanol, and citrate were identified as potential biomarkers for distinguishing individuals between Spring-1 and Summer-1. Ethanol and acetone were better predictors for distinguishing individuals between Spring-2 and Summer-2. Taken together, the present study demonstrated the impact of naturally induced HS on physiological parameters, production traits, and the blood metabolome of Holstein cows. There are different biological responses and regulation mechanisms between first- and second-parity Holstein cows.


Subject(s)
Lactation , Milk , Animals , Cattle , Female , Pregnancy , Heat-Shock Response , Lactation/physiology , Milk/chemistry , Parity , Seasons
17.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373298

ABSTRACT

The present study aimed to identify key circRNAs and pathways associated with heat stress in blood samples of Holstein cows, which will provide new insights into the molecular mechanisms driving heat stress in cows. Hence, we evaluated changes in milk yield, rectal temperature, and respiratory rate of experimental cows between heat stress (summer) and non-heat stress (spring) conditions with two comparisons, including Sum1 vs. Spr1 (same lactation stage, different individuals, 15 cows per group) and Sum1 vs. Spr2 (same individual, different lactation stages, 15 cows per group). Compared to both Spr1 and Spr2, cows in the Sum1 group had a significantly lower milk yield, while rectal temperature and respiratory rate were significantly higher (p < 0.05), indicating that cows in the Sum1 group were experiencing heat stress. In each group, five animals were chosen randomly to undergo RNA-seq. The results reveal that 140 and 205 differentially expressed (DE) circRNAs were screened in the first and second comparisons, respectively. According to the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, these DE circRNAs were mainly enriched in five signaling pathways, including choline metabolism, the PI3K/AKT signaling pathway, the HIF-1 signaling pathway, the longevity-regulating pathway, and autophagy. Then, we obtained the top 10 hub source genes of circRNAs according to the protein-protein interaction networks. Among them, ciRNA1282 (HIF1A), circRNA4205 (NR3C1), and circRNA12923 (ROCK1) were enriched in multiple pathways and identified as binding multiple miRNAs. These key circRNAs may play an important role in the heat stress responses of dairy cows. These results provide valuable information on the involvement of key circRNAs and their expression pattern in the heat stress response of cows.


Subject(s)
Phosphatidylinositol 3-Kinases , RNA, Circular , Female , Cattle , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Hot Temperature , Heat-Shock Response/genetics , Lactation/genetics , Milk/metabolism
18.
Animals (Basel) ; 13(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37174524

ABSTRACT

In this study, four methods (phenol-chloroform protocol, sodium iodide kit, QIAamp DNA Blood Mini Kit, and TIANamp Micro DNA Kit) were used to extract cell-free DNA (cfDNA) from cattle blood, and the yield and purity of cfDNA varied in four different methods from 0.36 to 0.84 ng/mL for yield and 0.67 to 1.80 (A260/A280) for purity. Compared with other methods, the TIANamp Micro DNA kit performed better in both cfDNA amount and purity (p < 0.05); furthermore, blood cfDNA levels were significantly increased in Holstein dairy cows under the influence of heat stress (p < 0.01) and mastitis (p < 0.0001), which showed a potential power to discriminate mastitis (AUC = 0.99, 95% CI = 0.97 to 1.00) or heat stress (AUC = 0.86, 95% CI = 0.73 to 0.98) in cows. In brief, we established a complete experimental system for the extraction of cfDNA from cattle blood based on the high-yielding method of the TIANamp Micro DNA Kit and showed the effect of mastitis and heat stress on cfDNA levels in cattle blood for the first time. Our findings suggested that cfDNA in cattle blood may be a useful marker to measure mastitis and heat stress in dairy cattle.

19.
Animals (Basel) ; 13(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37238049

ABSTRACT

Heat stress has been a big challenge for animal survival and health due to global warming. However, the molecular processes driving heat stress response were unclear. In this study, we exposed the control group rats (n = 5) at 22 °C and the other three heat stress groups (five rats in each group) at 42 °C lasting 30, 60, and 120 min, separately. We performed RNA sequencing in the adrenal glands and liver and detected the levels of hormones related to heat stress in the adrenal gland, liver, and blood tissues. Weighted gene co-expression network analysis (WGCNA) was also performed. Results showed that rectal temperature and adrenal corticosterone levels were significantly negatively related to genes in the black module, which was significantly enriched in thermogenesis and RNA metabolism. The genes in the green-yellow module were strongly positively associated with rectal temperature and dopamine, norepinephrine, epinephrine, and corticosterone levels in the adrenal glands and were enriched in transcriptional regulatory activities under stress. Finally, 17 and 13 key genes in the black and green-yellow modules were identified, respectively, and shared common patterns of changes. Methyltransferase 3 (Mettl3), poly(ADP-ribose) polymerase 2 (Parp2), and zinc finger protein 36-like 1 (Zfp36l1) occupied pivotal positions in the protein-protein interaction network and were involved in a number of heat stress-related processes. Therefore, Parp2, Mettl3, and Zfp36l1 could be considered candidate genes for heat stress regulation. Our findings shed new light on the molecular processes underpinning heat stress.

20.
PeerJ ; 11: e15093, 2023.
Article in English | MEDLINE | ID: mdl-37070092

ABSTRACT

Background: Skeletal muscle is not only an important tissue involved in exercise and metabolism, but also an important part of livestock and poultry meat products. Its growth and development determines the output and quality of meat to a certain extent, and has an important impact on the economic benefits of animal husbandry. Skeletal muscle development is a complex regulatory network process, and its molecular mechanism needs to be further studied. Method: We used a weighted co-expression network (WGCNA) and single gene set enrichment analysis (GSEA) to study the RNA-seq data set of bovine tissue differential expression analysis, and the core genes and functional enrichment pathways closely related to muscle tissue development were screened. Finally, the accuracy of the analysis results was verified by tissue expression profile detection and bovine skeletal muscle satellite cell differentiation model in vitro (BSMSCs). Results: In this study, Atp2a1, Tmod4, Lmod3, Ryr1 and Mybpc2 were identified as marker genes in muscle tissue, which are mainly involved in glycolysis/gluconeogenesis, AMPK pathway and insulin pathway. The assay results showed that these five genes were highly expressed in muscle tissue and positively correlated with the differentiation of bovine BSMSCs. Conclusions: In this study, several muscle tissue characteristic genes were excavated, which may play an important role in muscle development and provide new insights for bovine molecular genetic breeding.


Subject(s)
Lipid Metabolism , Muscle, Skeletal , Animals , Cattle , Cell Differentiation/genetics , Muscle, Skeletal/metabolism , Lipid Metabolism/genetics , Muscle Development/genetics , Meat
SELECTION OF CITATIONS
SEARCH DETAIL
...