Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Inflammation ; 45(2): 919-928, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35059921

ABSTRACT

Sepsis caused by a dysregulated host response to infection is a life-threatening disease that can lead to organ dysfunction. Due to its unclear and complex mechanism, effective medicine for the treatment of sepsis is urgently required. The extensive release of cytokines and other mediators like TNF-α and interleukin-6 (IL-6) play critical roles in the development of sepsis. The present study aims to evaluate the potential protective effects of an anti-TNF-α/HSA/IL-6R triple-specific fusion protein (TAL-6) under septic experimental conditions. The anti-TNF-α/HSA/IL-6R triple-specific fusion protein (TAL-6), which links three published single domain antibodies, was designed and constructed in our lab. High purity fusion proteins were obtained with high binding affinity for TNF-α (94.75 pM), human serum albumin (1.83 nM) and IL-6R (2.29 nM). TAL-6 protected mouse fibroblast fibrosarcoma cells (L929) from apoptosis induced by TNF-α, establishing that the expressed fusion proteins can selectively interact with TNF-α in vitro. In vivo, the survival rate of cecal ligation and puncture (CLP) was notably increased in the group with TAL-6 treatment and significantly higher compared with the single-targeted IL-6R and TNF-α fusion protein at the same dose. After treatment with TAL-6, the serum levels of TNF-α, IL-1ß, and IL-6 were significantly decreased, and sepsis-induced pathological injuries in the kidney were remarkably attenuated. TAL-6 is therefore a potential candidate for the development of new drugs against sepsis in human.


Subject(s)
Sepsis , Tumor Necrosis Factor-alpha , Animals , Cecum/pathology , Cytokines , Disease Models, Animal , Mice , Sepsis/drug therapy , Sepsis/pathology , Tumor Necrosis Factor Inhibitors
2.
Drugs R D ; 21(4): 445-453, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34750767

ABSTRACT

BACKGROUND AND OBJECTIVE: Dexmedetomidine is a highly selective α2-adrenergic receptor agonist with sedative, analgesic, anti-sympathetic and stress-reducing effects. It has been widely used as an adjunct for general anesthesia of multiple surgeries. However, the relationship between the utilization of dexmedetomidine in intestinal surgery and the postoperative inflammatory response of patients remains unclear. METHODS: A randomized, controlled, single-blinded clinical trial was performed. Eighty-six patients assigned for intestinal surgery were recruited and were randomly divided into two groups (dexmedetomidine group, n = 40; control group, n = 40) [six participants were excluded due to multiple reasons, such as allergy and drug use history]. The clinical characteristics and physiological outcomes of participants who received different treatments (dexmedetomidine and 0.9% sodium chloride) were collected and analyzed. Blood samples of the two groups were collected before administration (T0), 10 min after pumping dexmedetomidine/saline solution (T1), immediately after the operation started (T2), 30 min after the operation started (T3), and immediately after the operation ended (T4). Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate the proinflammatory factors. RESULTS: Intravenous injection of dexmedetomidine before intestinal surgery decreased a variety of circulating proinflammatory factors. Dexmedetomidine alleviated the stress response and promoted the recovery of cognitive ability among patients undergoing intestinal surgery. CONCLUSION: Dexmedetomidine administration in patients undergoing intestinal surgery inhibited the surgery-induced inflammatory reactions.


Subject(s)
Dexmedetomidine , Anti-Inflammatory Agents , Humans , Hypnotics and Sedatives , Single-Blind Method
3.
Front Pharmacol ; 12: 681424, 2021.
Article in English | MEDLINE | ID: mdl-34054555

ABSTRACT

Diabetic nephropathy the main reason for end stage renal disease is a common microvascular complication in patients with type 1 and type 2 diabetes. The interleukin-6 (IL-6), acting as a pleiotropic cytokine, play key roles in main autoimmune disorders. The recombinant anti-IL-6R fusion proteins (VHH-0031) constructed and obtained in our lab is a dual target-directed single domain-based fusion protein against the interleukin-6 receptor. This study aims to explore the renoprotective effect of VHH-0031 in diabetic nephropathy. VHH-0031 treatment alleviated renal inflammation, morphologic injury and renal insufficiency in both Goto-Kakizaki rats and STZ-induced Sprague Dawley rats. These renoprotective effects of VHH-0031 are associated with alleviating inflammation and suppression of the JAK2/STAT3 signaling pathway. The mesangial cells treated with VHH-0031 exhibited anti-proliferation, anti-inflammation and inactivation of JAK2/STAT3 pathway under high glucose condition. In conclusion, this study demonstrates that VHH-0031 exhibited a potent protective effect in kidney of diabetic rats and its mechanism may be concerned with the inhibition of the IL-6R/JAK2/STAT3 pathway of glomerular mesangial cells.

4.
Int J Ophthalmol ; 13(12): 1976-1982, 2020.
Article in English | MEDLINE | ID: mdl-33344199

ABSTRACT

AIM: To evaluate the feasibility of promoting genetic detection for granular corneal dystrophy type 2 (GCD2) by a questionnaire conducted among citizens in five cities in China. METHODS: The data were collected by questionnaire, and analyzed by Chi-square test and one-tailed t test in IBM SPSS statistics. RESULTS: Based on the survey data on the awareness of GCD2 genetic detection in this study and the positive predictive analysis report of the citizens in five cities in China, the vast majority (84.2%) of respondents had never heard of it and did not know that GCD2 patients have been prohibited from performing excimer surgery that can deteriorate GCD2 patients' condition even leading to blindness. Though 3.4% of patients understood GCD2 very much, they have no idea that GCD2 could not be 100% accuracy diagnosed by the conventional inspection methods. CONCLUSION: It is feasible and necessary to use GCD2 genetic detection as an excimer preoperative examination project. In order to promote the development of detection project, a few improvements should be carried out in terms of the promoting efforts, costs, and research progress.

5.
ACS Omega ; 5(38): 24864-24870, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33015505

ABSTRACT

Theoretically, the two aldehydes of terephthalaldehyde (TPA) are equivalent, so the single or double Schiff base from TPA and d-glucosamine (Glc) may be formed at the same time. However, it is preferred to produce separately a single Schiff base (L1 ) or double Schiff base (L2 ) for different synthesis systems of anhydrous methanol or water-methanol. We calculated the Δr G of the formation of compounds L1 and L2 by density functional theory (DFT). In an anhydrous methanol system, the Δr G values of L1 and L2 are both below zero and L2 is lower, suggesting the spontaneous formation of the two Schiff bases. Though adjusting the molar ratio of Glc to TPA, L1 and L 2 both were separately formed in anhydrous methanol. However, in the water-methanol system, L2 was absent, which is most likely due to higher Δr G (4.95 eV) and better water solubility. The results also exhibits that the positive charge of C in -CHO for TPA is smaller in a mixed solvent than that in methanol, which confirms that the nucleophilic reaction of the Schiff base is more difficult in a mixed solvent. Therefore, we could realize to control the synthesis of a pure single or double Schiff base from Glc and TPA by adjusting the molar ratio and solvent. The as-prepared two kinds of Schiff bases have strong optical properties, high bacteriostatic activity, and can be used as fluorescent probes for tumor cell imaging.

6.
Biosci Rep ; 40(9)2020 09 30.
Article in English | MEDLINE | ID: mdl-32880389

ABSTRACT

The currently used anti-cytokine therapeutic antibodies cannot selectively neutralize pathogenic cytokine signaling that cause collateral damage to protective signaling cascades carrying the potential for unwanted side effects. The variable domains of heavy-chain only antibodies (HCAbs) discovered in Camelidae are stable and display to be fully functional in antigen-binding against variable targets, which seem to be attractive candidates for the next-generation biologic drug study. The purpose of our study was to establish a simple prokaryotic expression system for large-scale expression, purification, and refolding of the recombinant anti-tumor necrosis factor α (TNF-α) fusion protein (FVH1-1) from inclusion bodies. Over 95% purity of the recombinant anti-TNF-α fusion proteins was obtained by just one purification step in our developed prokaryotic expression system, while the results of surface plasmon resonance (SPR) established the high-efficiency potent binding ability of FVH1-1 to human TNF-α. The counteraction of TNF-α cytotoxic effect experiment on the mouse fibroblast fibrosarcoma cell line (L929) confirmed that the expressed FVH1-1 were able to selectively and highly combine with human recombinant TNF-α (hTNF-α) in vitro. Western blot results showed that FVH1-1 can inhibit the activation of caspase-9 and PARP, which are the apoptotic signaling pathway proteins activated by hTNF-α. Meanwhile, lysosome autophagy signaling pathways stimulated by hTNF-α were inhibited by FVH1-1, which down-regulated the expression of LC3II/LC3I and up-regulated the expression of P62, indicating that the autophagy linked with TNF-α-induced apoptosis in response to rheumatoid arthritis. The results of the AIA rat model experiment presented that FVH1-1 can reduce the degree of joint swelling and inflammatory factors to a certain extent in vivo.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Autophagy/drug effects , Recombinant Fusion Proteins/pharmacology , Single-Chain Antibodies/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Autophagy/immunology , Cell Line, Tumor , Freund's Adjuvant/administration & dosage , Freund's Adjuvant/immunology , Humans , Lysosomes/drug effects , Lysosomes/immunology , Lysosomes/metabolism , Mice , Rats , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/therapeutic use , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology , Single-Chain Antibodies/genetics , Single-Chain Antibodies/isolation & purification , Single-Chain Antibodies/therapeutic use , Tumor Necrosis Factor-alpha/immunology
7.
Mol Vis ; 25: 427-437, 2019.
Article in English | MEDLINE | ID: mdl-31523120

ABSTRACT

Purpose: To identify mutations in crystallin genes in Chinese families with congenital cataracts. Methods: Forty-two unrelated families with non-syndromic congenital cataracts were enrolled in this study. The coding exons and adjacent intronic regions of crystallin genes, including CRYAA, CRYAB, CRYBA1, CRYBA4, CRYBB1, CRYBB2, CRYBB3, CRYGC, CRYGD and CRYGS, were analyzed with Sanger sequencing. Novel variants were further evaluated in 112 ethnically matched controls. To confirm the novel mutations, short tandem repeat (STR) haplotypes were constructed to check the cosegregation with congenital cataract. The pathogenic potential of the novel mutations were assessed using bioinformatics tools, including Sorting Intolerant From Tolerant v5.1.1 (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2), and Human Splicing Finder. The pathogenicity of all the mutations was evaluated according to the guidelines of the American College of Medical Genetics (ACMG) and InterVar software. Results: Seven previously reported mutations in crystallin genes identified in ten unrelated families were associated with the congenital nuclear cataracts. Four novel mutations in crystallin genes, including c.35G>T (p.R12L) in CRYAA, c.463C>A (p.Q155K) in CRYBB2, IVS1 c.10-1G>A in CRYGC, and c.346delT (p.F116Sfsx29) in CRYGD, were identified in four unrelated families with congenital cataracts. These mutations cosegregated with all affected individuals in each family were not observed in the unaffected family members or in the 112 unrelated controls. All four novel mutations were categorized as disease "likely pathogenic" except IVS1 c.10-1G>A in CRYGC "pathogenic" using InterVar software in accordance with the ACMG standard. Mutations in crystallin genes were responsible for 33.33% of the Chinese families with congenital cataracts in this cohort. Conclusions: In this study, we identified four novel mutations in crystallin genes in Chinese families with congenital cataracts. The results expand the mutational spectrum of crystallin genes, which may be helpful for the molecular diagnosis of congenital cataracts in the era of precision medicine.


Subject(s)
Asian People/genetics , Cataract/congenital , Cataract/genetics , Crystallins/genetics , Genetic Testing , Mutation/genetics , Base Sequence , Crystallins/chemistry , DNA Mutational Analysis , Family , Haplotypes/genetics , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL