Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 857(Pt 2): 159460, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36257443

ABSTRACT

Back mixing was frequently used to replace conventional bulking agenting, however, however, the internal effect mechanism was unclear. This study compared four bulking agents: mushroom residue (MR), MR + primary BM (BM-P), BM-P, and secondary BM (BM-S). The effect mechanism of back mixing (BM) inoculation was assessed based on biodrying performance and microbial community succession. Four trials (Trial A, Trial B, Trial C, and Trial D) reached maximum temperatures of 61.9, 68.8, 73.7, and 69.9 °C on days 6, 3, 2, and 2, respectively. Application of BM increased pile warming rate and resulted in higher temperatures. Temperature changes and microbial competition lead to decline in microbial diversity and richness during the biodrying process. Microbial diversity increased of four biodried products. The number of microorganisms shared by Trial A, Trial B, Trial C, and Trial D were 90, 119, 224, and 300, respectively. The addition of BM improved microbial community stability, and facilitating the initiation of biodrying process. Microbial genera that played an important role in the biodrying process included Ureibacillus, Bacillus, Sphaerobacter, and Tepidimicrobium. Based on these results, it was concluded that BM was efficient method to enhanced the microbial activity and reduced the usage of bulking agent.


Subject(s)
Bacillus , Microbiota , Sewage/chemistry , Hot Temperature , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL