Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 47(2): 889-98, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23190276

ABSTRACT

Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring , Gases/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis , Environmental Monitoring/methods , Models, Chemical , Particle Size
2.
Sci Total Environ ; 443: 375-86, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23202383

ABSTRACT

A new methodology, referred to as the multi-scale structure, integrates "tailpipe-to-road" (i.e., on-road domain) and "road-to-ambient" (i.e., near-road domain) simulations to elucidate the environmental impacts of particulate emissions from traffic sources. The multi-scale structure is implemented in the CTAG model to 1) generate process-based on-road emission rates of ultrafine particles (UFPs) by explicitly simulating the effects of exhaust properties, traffic conditions, and meteorological conditions and 2) to characterize the impacts of traffic-related emissions on micro-environmental air quality near a highway intersection in Rochester, NY. The performance of CTAG, evaluated against with the field measurements, shows adequate agreement in capturing the dispersion of carbon monoxide (CO) and the number concentrations of UFPs in the near road micro-environment. As a proof-of-concept case study, we also apply CTAG to separate the relative impacts of the shutdown of a large coal-fired power plant (CFPP) and the adoption of the ultra-low-sulfur diesel (ULSD) on UFP concentrations in the intersection micro-environment. Although CTAG is still computationally expensive compared to the widely-used parameterized dispersion models, it has the potential to advance our capability to predict the impacts of UFP emissions and spatial/temporal variations of air pollutants in complex environments. Furthermore, for the on-road simulations, CTAG can serve as a process-based emission model; Combining the on-road and near-road simulations, CTAG becomes a "plume-in-grid" model for mobile emissions. The processed emission profiles can potentially improve regional air quality and climate predictions accordingly.


Subject(s)
Aerosols , Air Pollutants , Models, Theoretical , Vehicle Emissions
3.
Environ Sci Technol ; 46(1): 312-9, 2012 Jan 03.
Article in English | MEDLINE | ID: mdl-22084971

ABSTRACT

Highway-building environments are prevalent in metropolitan areas. This paper presents our findings in investigating pollutant transport in a highway-building environment by combing field measurement and numerical simulations. We employ and improve the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to simulate the spatial variations of black carbon (BC) concentrations near highway I-87 and an urban school in the South Bronx, New York. The results of CTAG simulations are evaluated against and agree adequately with the measurements of wind speed, wind directions, and BC concentrations. Our analysis suggests that the BC concentration at the measurement point of the urban school could decrease by 43-54% if roadside buildings were absent. Furthermore, we characterize two generalized conditions in a highway-building environment, i.e., highway-building canyon and highway viaduct-building. The former refers to the canyon between solid highway embankment and roadside buildings, where the spatial profiles of BC depend on the equivalent canyon aspect ratio and flow recirculation. The latter refers to the area between a highway viaduct (i.e., elevated highway with open space underneath) and roadside buildings, where strong flow recirculation is absent and the spatial profiles of BC are determined by the relative heights of the highway and buildings. The two configurations may occur at different locations or in the same location with different wind directions when highway geometry is complex. Our study demonstrates the importance of incorporating highway-building interaction into the assessment of human exposure to near-road air pollution. It also calls for active roles of building and highway designs in mitigating near-road exposure of urban population.


Subject(s)
Carbon/analysis , Cities , Construction Materials , Models, Chemical , Soot/analysis , Transportation , Computer Simulation , Humans , New York , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...