Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38982645

ABSTRACT

Phase change materials (PCMs) possess the potential to regulate temperature by utilizing their thermal properties to absorb and release heat. Nevertheless, the application of PCMs in thermal management is constrained by issues such as liquid leakage and limited flexibility. In this study, we propose a novel approach to address these challenges by incorporating a pore structure within nanofibers to confine the crystallization of phase change molecules, thereby enhancing the flexibility of the composite material. Additionally, inspired by the adaptive mechanisms observed in plants, we have developed a form stable PCM based on polyether, which effectively mitigates the issue of liquid leakage at higher temperatures. Despite being a solid-liquid PCM at its core, this material exhibits molecular-scale flow and macroscopic shape stability as a result of intermolecular forces. The composite film material possesses remarkable flexibility, efficient thermal management capabilities, adjustable phase transition temperature, and the ability to undergo repeated processing and utilization. Consequently, it holds promising potential for applications in personal thermal energy management.

2.
Polymers (Basel) ; 11(12)2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31817765

ABSTRACT

The effect of sequence on copolymer properties is rarely studied, especially the degradation behavior of the biomaterials. A series of linear-comb block, gradient, random copolymers were successfully achieved using hydroxylated polybutadiene as the macroinitiator by simple ring-opening polymerization of l-lactide (l-LA) and 1,3-trimethylene carbonate (TMC). The hydrolytic degradation behaviors of the copolymers were systemically evaluated by using nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), differential scanning calorimeter (DSC), and scanning electron microscopy (SEM) to illustrate the influences of comonomer compositions and sequence structures. The linear-comb block copolymers (lcP(TMC-b-LLA)) with different compositions had different degradation rates, which increased with l-LA content. Thermal property changes were observed with decreased Tm and increased ΔHm in all block copolymers during the degradation. To combine different sequence structures, unique degradation behaviors were observed for the linear-comb block, gradient and random copolymers even with similar comonomer composition. The degradation rates of linear-comb PLLA-gradient-PTMC (lcP(LLA-grad-TMC)) and linear-comb PLLA-random-PTMC (lcP(LLA-ran-TMC)) were accelerated due to the loss of regularity and crystallinity, resulting in a remarkable decrease on weight retention and molar mass. The hydrolysis degradation rate increased in the order lcP(TMC-b-LLA), lcP(LLA-ran-TMC), lcP(LLA-grad-TMC). Therefore, the hydrolytic degradation behavior of comb-like graft copolymers depends on both the compositions and the sequences dramatically.

3.
Biomacromolecules ; 20(10): 3952-3968, 2019 10 14.
Article in English | MEDLINE | ID: mdl-31490668

ABSTRACT

A facile method in combination of "grafting from" and "end-functionalization" was developed for the synthesis of fluorescent highly branched poly(l-lactide)s (PLLA-COU) via ring opening polymerization (ROP) and esterification end-capping. These resulting PLLA-COU with four kinds of architectures, including linear, star, linear-comb, and star-comb structures, were subjected to characterization and application as fluorescent visible paclitaxel-loaded microspheres. The mutual effects of architecture and end-groups on thermal and fluorescence properties, enzymatic degradation, and drug release behaviors were focused. Contrast to linear and star PLLA-COU, two comb-shaped analogues demonstrated higher fluorescence quantum yield, faster drug release, and lower enzymatic degradation rate. All the fluorescent microspheres could maintain fluorescence traceability. The fluorescent PLLA-COU displayed negligible toxicity and good biocompatibility. This work highlights that the fluorescent highly branched poly(l-lactide)s are properties-tailored and used as fluorescent visible drug delivery systems (DDS) for potential theranostic applications.


Subject(s)
Fluorescent Dyes/chemistry , Paclitaxel/chemistry , Polyesters/chemistry , Animals , Biocompatible Materials/chemistry , Cell Line , Drug Delivery Systems/methods , Mice , Microspheres , Polymerization
4.
J Mech Behav Biomed Mater ; 91: 255-265, 2019 03.
Article in English | MEDLINE | ID: mdl-30599448

ABSTRACT

High-molecular-weight poly(ethylene brassylate-co-ε-caprolactone) copolyesters within a wide composition range were prepared via triphenyl bismuth catalyzed copolymerization of ethylene brassylate (EB) and ε-caprolactone (ε-CL) in bulk. Microstructural analysis of the resulting copolyesters demonstrated that the comonomer units were completely random distribution. DSC and WAXD recognized that the copolyesters cocrystallize within the lattices analogous to either of the parent homopolymers. It confirmed the isodimorphism behavior with a pseudo-eutectic point of melting temperatures as well as lattice spacings at 75 mol% ε-CL units. The crystal cell would be stretched in one dimension rather than expanding in both dimensions with the incorporation of comonomer units according to the result of WAXD. The mechanical properties of the copolyesters are well tunable by the composition, and its trend is consistent with the isodimorphism behavior, in particular, the maximum elongation at break over 2000% is located at the pseudo-eutectic point. The intralamellar shear occurred at the low tensile rate while both intralamellar shear and interlamellar shear occurred at high tensile rate. The copolymers exhibit excellent hydrolytic stability.


Subject(s)
Caproates/chemistry , Ethers, Cyclic/chemistry , Lactones/chemistry , Mechanical Phenomena , Polyesters/chemistry , Polyesters/chemical synthesis , Chemistry Techniques, Synthetic , Kinetics , Materials Testing , Polyesters/metabolism , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...