Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 394
Filter
1.
RSC Adv ; 14(22): 15413-15418, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38741962

ABSTRACT

The urgent need to develop biocompatible, non-resistant antibacterial agents to effectively combat Gram-negative bacterial infections, particularly for the treatment of peritonitis, presents a significant challenge. In this study, we introduce our water-soluble Cu30 nanoclusters (NCs) as a potent and versatile antibacterial agent tailored for addressing peritonitis. The as-synthesized atomically precise Cu30 NCs demonstrate exceptional broad-spectrum antibacterial performance, and especially outstanding bactericidal activity of 100% against Gram-negative Escherichia coli (E. coli). Our in vivo experimental findings indicate that the Cu30 NCs exhibit remarkable therapeutic efficacy against primary peritonitis caused by E. coli infection. Specifically, the treatment leads to a profound reduction of drug-resistant bacteria in the peritoneal cavity of mice with peritonitis by more than 5 orders of magnitude, along with the resolution of pathological features in the peritoneum and spleen. Additionally, comprehensive in vivo biosafety assessment underscores the remarkable biocompatibility, low biotoxicity, as well as efficient hepatic and renal clearance of Cu30 NCs, emphasizing their potential for in vivo application. This investigation is poised to advance the development of novel Cu NC-based antibacterial agents for in vivo antibacterial treatment and the elimination of abdominal inflammation.

2.
Chemistry ; : e202401178, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705854

ABSTRACT

Some nanomaterials with intrinsic protease-like activity have the advantages of good stability, biosafety, low price, large-scale preparation and unique property of nanomaterials, which are promising alternatives for natural proteases in various applications. An especial term, "nanoprotease", has been coined to stress the intrinsic proteolytic property of these nanomaterials. As a new generation of artificial proteases, they have become a burgeoning field, attracting many researchers to design and synthesize high performance nanoproteases. In this review, we summarize recent progress on all types of nanoproteases with regard of their activity, mechanism and application and introduce a new and effective strategy for engineering high-performance nanoproteases. In addition, we discuss the challenges and opportunities of nanoprotease research in the future.

3.
Foods ; 13(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38790784

ABSTRACT

Tartronic acid is known for its potential to inhibit sugar-to-lipid conversion in the human body, leading to weight loss and fat reduction. This compound is predominantly found in cucumbers and other cucurbit crops. Therefore, cultivating cucumbers with high tartronic acid content holds significant health implications. In this study, we assessed the tartronic acid content in 52 cucumber germplasms with favorable overall traits and identified 8 cucumber germplasms with elevated tartronic acid levels. Our investigation into factors influencing cucumber tartronic acid revealed a decrease in content with fruit development from the day of flowering. Furthermore, tartronic acid content was higher in early-harvested fruits compared to late-harvested ones, with the rear part of the fruit exhibiting significantly higher content than other parts. Foliar spraying of microbial agents increased tartronic acid content by 84.4%. This study provides valuable resources for breeding high tartronic acid cucumbers and offers practical insights for optimizing cucumber production practices.

4.
Ann Hematol ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761184

ABSTRACT

Bruton's tyrosine kinase inhibitors (BTKi) exhibit superior efficacy in relapsed/refractory primary central nervous system lymphoma (PCNSL), but few studies have evaluated patients with newly diagnosed PCNSL, and even fewer studies have evaluated differences in efficacy between treatment with BTKi and traditional chemotherapy. This study retrospectively analyzed the clinical characteristics of 86 patients with PCNSL and identified predictors of poor prognosis for overall survival (OS). After excluding patients who only received palliative care, 82 patients were evaluated for efficacy and survival. According to the induction regimen, patients were divided into the traditional chemotherapy, BTKi combination therapy, and radiotherapy groups; the objective response rates (ORR) of the three groups were 71.4%, 96.2%, and 71.4% (P = 0.037), respectively. Both median progression-free survival and median duration of remission showed statistically significant differences (P = 0.019 and P = 0.030, respectively). The median OS of the BTKi-containing therapy group was also longer than that of the traditional chemotherapy group (not reached versus 47.8 (32.5-63.1) months, P = 0.038).Seventy-one patients who achieved an ORR were further analyzed, and achieved an ORR after four cycles of treatment and maintenance therapy had prolonged OS (P = 0.003 and P = 0.043, respectively). In conclusion, survival, and prognosis of patients with newly diagnosed PCNSL are influenced by the treatment regimen, with the BTKi-containing regimen showing great potential.

5.
Biosens Bioelectron ; 259: 116403, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38776802

ABSTRACT

Robust encapsulation and controllable release of biomolecules have wide biomedical applications ranging from biosensing, drug delivery to information storage. However, conventional biomolecule encapsulation strategies have limitations in complicated operations, optical instability, and difficulty in decapsulation. Here, we report a simple, robust, and solvent-free biomolecule encapsulation strategy based on gallium liquid metal featuring low-temperature phase transition, self-healing, high hermetic sealing, and intrinsic resistance to optical damage. We sandwiched the biomolecules with the solid gallium films followed by low-temperature welding of the films for direct sealing. The gallium can not only protect DNA and enzymes from various physical and chemical damages but also allow the on-demand release of biomolecules by applying vibration to break the liquid gallium. We demonstrated that a DNA-coded image file can be recovered with up to 99.9% sequence retention after an accelerated aging test. We also showed the practical applications of the controllable release of bioreagents in a one-pot RPA-CRISPR/Cas12a reaction for SARS-COV-2 screening with a low detection limit of 10 copies within 40 min. This work may facilitate the development of robust and stimuli-responsive biomolecule capsules by using low-melting metals for biotechnology.


Subject(s)
Biosensing Techniques , Phase Transition , SARS-CoV-2 , Biosensing Techniques/methods , SARS-CoV-2/isolation & purification , COVID-19/virology , Gallium/chemistry , Humans , DNA/chemistry , CRISPR-Cas Systems , Capsules/chemistry
6.
Brain Inj ; : 1-10, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38711413

ABSTRACT

BACKGROUND: Organophosphorus pesticide poisoning can lead to severe brain damage, but the specific mechanisms involved are not fully understood. Our research aims to elucidate the function of the TRPV4 ion channel in the development of brain injury induced by paraoxon (POX). METHODS: In vivo, we examined the survival rate, behavioral seizures, histopathological alterations, NMDA receptor phosphorylation, as well as the expression of the NLRP3-ASC-caspase-1 complex and downstream inflammatory factors in the POX poisoning model following intervention with the TRPV4 antagonist GSK2193874. In vitro, we investigated the effects of GSK2193874 on NMDA-induced inward current, cell viability, cell death rate, and Ca2+ accumulation in primary hippocampal neurons. RESULTS: The treatment with the TRPV4 antagonist increased the survival rate, suppressed the status epilepticus, improved pathological damage, and reduced the phosphorylation level of NMDA receptors after POX exposure. Additionally, it inhibited the upregulation of NLRP3 inflammasome and inflammatory cytokines expression after POX exposure. Moreover, the TRPV4 antagonist corrected the NMDA-induced increase in inward current and cell death rate, decrease in cell viability, and Ca2+ accumulation. CONCLUSION: TRPV4 participates in the mechanisms of brain injury induced by POX exposure through NMDA-mediated excitotoxicity and NLRP3-mediated inflammatory response.

7.
Cancer Med ; 13(7): e7043, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572921

ABSTRACT

BACKGROUND: As an indicator of tumor invasiveness, microvascular invasion (MVI) is a crucial risk factor for postoperative relapse, metastasis, and unfavorable prognosis in hepatocellular carcinoma (HCC). Nevertheless, the genetic mechanisms underlying MVI, particularly for Chinese patients, remain mostly uncharted. METHODS: We applied deep targeted sequencing on 66 Chinese HCC samples. Focusing on the telomerase reverse transcriptase (TERT) promoter (TERTp) and TP53 co-mutation (TERTp+/TP53+) group, gene set enrichment analysis (GSEA) was used to explore the potential molecular mechanisms of the TERTp+/TP53+ group on tumor progression and metastasis. Additionally, we evaluated the tumor immune microenvironment of the TERTp+/TP53+ group in HCC using multiplex immunofluorescence (mIF) staining. RESULTS: Among the 66 HCC samples, the mutated genes that mostly appeared were TERT, TP53, and CTNNB1. Of note, we found 10 cases with TERTp+/TP53+, of which nine were MVI-positive and one was MVI-negative, and there was a co-occurrence of TERTp and TP53 (p < 0.05). Survival analysis demonstrated that patients with the TERTp+/TP53+ group had lower the disease-free survival (DFS) (p = 0.028). GSEA results indicated that telomere organization, telomere maintenance, DNA replication, positive regulation of cell cycle, and negative regulation of immune response were significantly enriched in the TERTp+/TP53+ group (all adjusted p-values (p.adj) < 0.05). mIF revealed that the TERTp+/TP53+ group decreased CD8+ T cells infiltration (p = 0.25) and enhanced PDL1 expression (p = 0.55). CONCLUSIONS: TERTp+/TP53+ was significantly enriched in MVI-positive patients, leading to poor prognosis for HCC patients by promoting proliferation of HCC cell and inhibiting infiltration of immune cell surrounding HCC. TERTp+/TP53+ can be utilized as a potential indicator for predicting MVI-positive patients and poor prognosis, laying a preliminary foundation for further exploration of co-mutation in HCC with MVI and clinical treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , CD8-Positive T-Lymphocytes/pathology , Neoplasm Recurrence, Local/genetics , Prognosis , Neoplasm Invasiveness/pathology , Retrospective Studies , Tumor Microenvironment/genetics
8.
World J Gastroenterol ; 30(9): 1224-1236, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38577190

ABSTRACT

BACKGROUND: As a critical early event in hepatocellular carcinogenesis, telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma (HCC) patients, and its function in the genesis and treatment of HCC has gained much attention over the past two decades. AIM: To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase. METHODS: The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to "articles" and "reviews" published in English. A total of 873 relevant publications related to HCC and telomerase were identified. We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications, such as the trends in the publications, citation counts, most prolific or influential writers, and most popular journals; to screen for keywords occurring at high frequency; and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences. VOSviewer was utilized to compile and visualize the bibliometric data. RESULTS: A surge of 51 publications on HCC/telomerase research occurred in 2016, the most productive year from 1996 to 2023, accompanied by the peak citation count recorded in 2016. Up to December 2023, 35226 citations were made to all publications, an average of 46.6 citations to each paper. The United States received the most citations (n = 13531), followed by China (n = 7427) and Japan (n = 5754). In terms of national cooperation, China presented the highest centrality, its strongest bonds being to the United States and Japan. Among the 20 academic institutions with the most publications, ten came from China and the rest of Asia, though the University of Paris Cité, Public Assistance-Hospitals of Paris, and the National Institute of Health and Medical Research (INSERM) were the most prolific. As for individual contributions, Hisatomi H, Kaneko S, and Ide T were the three most prolific authors. Kaneko S ranked first by H-index, G-index, and overall publication count, while Zucman-Rossi J ranked first in citation count. The five most popular journals were the World Journal of Gastroenterology, Hepatology, Journal of Hepatology, Oncotarget, and Oncogene, while Nature Genetics, Hepatology, and Nature Reviews Disease Primers had the most citations. We extracted 2293 keywords from the publications, 120 of which appeared more than ten times. The most frequent were HCC, telomerase and human telomerase reverse transcriptase (hTERT). Keywords such as mutational landscape, TERT promoter mutations, landscape, risk, and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years. CONCLUSION: Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Telomerase , Humans , Carcinoma, Hepatocellular/therapy , Liver Neoplasms/therapy , Oncogenes , Bibliometrics
9.
Health Commun ; : 1-13, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600660

ABSTRACT

This study employed the model of stigma communication (MSC) to analyze how exposure to COVID-19-related information affected stigma-related information sharing about people who contracted COVID-19 during the pandemic and examined the cognitive process of the MSC in a collectivist culture. Based on a survey of 526 social media users during the COVID-19 pandemic in China, the study found that exposure to contact tracing information and pandemic control information had different impact on stigma-related information sharing through a series of cognitive variables. A dual-path model showed that perceived personal risk influenced stigma-related information sharing through attribution of blame toward the infected (the personal path), while perceived social risk influenced stigma-related information sharing through protection norm conformity (the social path). Compared to the personal path, the social path is more salient in shaping stigmatized attitudes and behaviors. The findings and discussions added to our understanding of the intricate stigma communication process in a collectivist culture.

10.
World J Gastrointest Oncol ; 16(4): 1647-1659, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660668

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of death due to its complexity, heterogeneity, rapid metastasis and easy recurrence after surgical resection. We demonstrated that combination therapy with transcatheter arterial chemoembolization (TACE), hepatic arterial infusion chemotherapy (HAIC), Epclusa, Lenvatinib and Sintilimab is useful for patients with advanced HCC. CASE SUMMARY: A 69-year-old man who was infected with hepatitis C virus (HCV) 30 years previously was admitted to the hospital with abdominal pain. Enhanced computed tomography (CT) revealed a low-density mass in the right lobe of the liver, with a volume of 12.9 cm × 9.4 cm × 15 cm, and the mass exhibited a "fast-in/fast-out" pattern, with extensive filling defect areas in the right branch of the portal vein and an alpha-fetoprotein level as high as 657 ng/mL. Therefore, he was judged to have advanced HCC. During treatment, the patient received three months of Epclusa, three TACE treatments, two HAIC treatments, three courses of sintilimab, and twenty-one months of lenvatinib. In the third month of treatment, the patient developed severe side effects and had to stop immunotherapy, and the Lenvatinib dose had to be halved. Postoperative pathological diagnosis indicated a complete response. The patient recovered well after the operation, and no tumor recurrence was found. CONCLUSION: Multidisciplinary conversion therapy for advanced enormous HCC caused by HCV infection has a significant effect. Individualized drug adjustments should be made during any treatment according to the patient's tolerance to treatment.

11.
Microorganisms ; 12(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674698

ABSTRACT

Chromium (Cr) contamination, widely present in the environment, poses a significant threat to both ecology and human health. Microbial remediation technology has become a hot topic in the field of heavy metal remediation due to its advantages, such as environmental protection, low cost, and high efficiency. This paper focused on using various characterization and analysis methods to investigate the bioreduction effect and mechanism of microorganisms on Cr(VI) under various influencing factors. The main contents and conclusions were as follows: Shewanella oneidensis MR-1 was selected as the target strain for studying its reduction of Cr(VI) at different inoculation amounts, temperatures, pH values, time intervals, etc. The results indicated that S. oneidensis MR-1 exhibited an optimal reduction effect on Cr(VI) at pH 7 and a temperature of 35 °C. Additionally, electron shuttles (ESs), including humic acid (HA) and 9,10-antraquinone-2,6-disulfonate (AQDS), were introduced into the degradation system to improve the reduction efficiency of S. oneidensis MR-1. Upon adding goethite further, S. oneidensis MR-1 significantly enhanced its reducing ability by converting Fe(III) minerals to Fe(II) and reducing Cr(VI) to Cr(III) during electron transfer.

12.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673993

ABSTRACT

Cucumber (Cucumis sativus L.) is a globally prevalent and extensively cultivated vegetable whose yield is significantly influenced by various abiotic stresses, including drought, heat, and salinity. Transcription factors, such as zinc finger-homeodomain proteins (ZHDs), a plant-specific subgroup of Homeobox, play a crucial regulatory role in stress resistance. In this study, we identified 13 CsZHDs distributed across all six cucumber chromosomes except chromosome 7. Phylogenetic analysis classified these genes into five clades (ZHDI-IV and MIF) with different gene structures but similar conserved motifs. Collinearity analysis revealed that members of clades ZHD III, IV, and MIF experienced amplification through segmental duplication events. Additionally, a closer evolutionary relationship was observed between the ZHDs in Cucumis sativus (C. sativus) and Arabidopsis thaliana (A. thaliana) compared to Oryza sativa (O. sativa). Quantitative real-time PCR (qRT-PCR) analysis demonstrated the general expression of CsZHD genes across all tissues, with notable expression in leaf and flower buds. Moreover, most of the CsZHDs, particularly CsZHD9-11, exhibited varying responses to drought, heat, and salt stresses. Virus-induced gene silencing (VIGS) experiments highlighted the potential functions of CsZHD9 and CsZHD10, suggesting their positive regulation of stomatal movement and responsiveness to drought stress. In summary, these findings provide a valuable resource for future analysis of potential mechanisms underlying CsZHD genes in response to stresses.


Subject(s)
Cucumis sativus , Evolution, Molecular , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Stress, Physiological , Cucumis sativus/genetics , Cucumis sativus/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers/genetics , Droughts , Chromosomes, Plant/genetics , Gene Expression Profiling
13.
Int Immunopharmacol ; 132: 111906, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38593501

ABSTRACT

BACKGROUND: Age-related visceral obesity could contribute to the development of cardiometabolic complications. The pathogenesis of visceral fat mass accumulation during the aging process remains complex and largely unknown. Interleukin-6 (IL-6) has emerged as one of the prominent inflammaging markers which are elevated in circulation during aging. However, the precise role of IL-6 in regulating age-related visceral adipose tissue accumulation remains uncertain. RESULTS: A cross-sectional study including 77 older adults (≥65 years of age) was initially conducted. There was a significant positive association between serum IL-6 levels and visceral fat mass. We subsequently validated a modest but significant elevation in serum IL-6 levels in aged mice. Furthermore, we demonstrated that compared to wildtype control, IL-6 deficiency (IL-6 KO) significantly attenuated the accumulation of visceral adipose tissue during aging. Further metabolic characterization suggested that IL-6 deficiency resulted in improved lipid metabolism parameters and energy expenditure in aged mice. Moreover, histological examinations of adipose depots revealed that the absence of IL-6 ameliorated adipocyte hypertrophy in visceral adipose tissue of aged mice. Mechanically, the ablation of IL-6 could promote the PKA-mediated lipolysis and consequently mitigate lipid accumulation in adipose tissue in aged mice. CONCLUSION: Our findings identify a detrimental role of IL-6 during the aging process by promoting visceral adipose tissue accumulation through inhibition of lipolysis. Therefore, strategies aimed at preventing or reducing IL-6 levels may potentially ameliorate age-related obesity and improve metabolism during aging.


Subject(s)
Aging , Interleukin-6 , Intra-Abdominal Fat , Lipolysis , Mice, Knockout , Animals , Interleukin-6/metabolism , Intra-Abdominal Fat/metabolism , Aging/metabolism , Aged , Male , Humans , Mice , Female , Mice, Inbred C57BL , Cross-Sectional Studies , Adipocytes/metabolism
14.
PLoS Biol ; 22(3): e3002330, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442096

ABSTRACT

Cilia play critical roles in cell signal transduction and organ development. Defects in cilia function result in a variety of genetic disorders. Cep290 is an evolutionarily conserved ciliopathy protein that bridges the ciliary membrane and axoneme at the basal body (BB) and plays critical roles in the initiation of ciliogenesis and TZ assembly. How Cep290 is maintained at BB and whether axonemal and ciliary membrane localized cues converge to determine the localization of Cep290 remain unknown. Here, we report that the Cep131-Cep162 module near the axoneme and the Cby-Fam92 module close to the membrane synergistically control the BB localization of Cep290 and the subsequent initiation of ciliogenesis in Drosophila. Concurrent deletion of any protein of the Cep131-Cep162 module and of the Cby-Fam92 module leads to a complete loss of Cep290 from BB and blocks ciliogenesis at its initiation stage. Our results reveal that the first step of ciliogenesis strictly depends on cooperative and retroactive interactions between Cep131-Cep162, Cby-Fam92 and Cep290, which may contribute to the complex pathogenesis of Cep290-related ciliopathies.


Subject(s)
Basal Bodies , Cognition , Animals , Cues , Axoneme , Cilia/genetics , Drosophila/genetics
15.
Environ Pollut ; 348: 123837, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38537793

ABSTRACT

High Ozone Production Rate (OPR) leads to O3 pollution episodes and adverse human health outcomes. OPR observation (Obs-OPR) and OPR modelling (Mod-OPR) have been obtained from observed and modelled peroxy radicals and nitrogen oxides. However, discrepancies between them remind of an imperfect understanding of O3 photochemistry. Direct measurement of OPR (Mea-OPR) by a twin-chamber system emerges. Herein, we optimized Mea-OPR design, i.e., minimizing the chamber surface area to volume ratio (S/V) to 9.8 m-1 from 18 m-1 and the dark uptake coefficient of O3 to 9.9 × 10-9 from 7.1 × 10-8 in the literature. In addition, control experiments further revealed and quantified a photo-enhanced O3 uptake, and therefore recommended an essential correction of Mea-OPR. We finally characterized a measurement uncertainty of ±38% and a detection limit of 3.2 ppbv h-1 (3SD), which suggested that Mea-OPR would be sensitive enough to measure OPR in urban or suburban environments. Further application of this system in urban Beijing during the Beijing 2022 Olympic Winter Games recorded a noontime OPR of 7.3 (±3.3, 1SD) ppbv h-1. These observational results added up to our confidence in future field application of Mea-OPR, to facilitate pollution control policy evaluation and to shed light on O3 photochemistry puzzle.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Humans , Ozone/analysis , Air Pollutants/analysis , Environmental Monitoring , Environmental Pollution/analysis , Nitrogen Oxides/analysis , China , Volatile Organic Compounds/analysis
16.
Proc Natl Acad Sci U S A ; 121(11): e2315550121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437556

ABSTRACT

TAX1BP1, a multifunctional autophagy adaptor, plays critical roles in different autophagy processes. As an autophagy receptor, TAX1BP1 can interact with RB1CC1, NAP1, and mammalian ATG8 family proteins to drive selective autophagy for relevant substrates. However, the mechanistic bases underpinning the specific interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins remain elusive. Here, we find that there are two distinct binding sites between TAX1BP1 and RB1CC1. In addition to the previously reported TAX1BP1 SKICH (skeletal muscle and kidney enriched inositol phosphatase (SKIP) carboxyl homology)/RB1CC1 coiled-coil interaction, the first coiled-coil domain of TAX1BP1 can directly bind to the extreme C-terminal coiled-coil and Claw region of RB1CC1. We determine the crystal structure of the TAX1BP1 SKICH/RB1CC1 coiled-coil complex and unravel the detailed binding mechanism of TAX1BP1 SKICH with RB1CC1. Moreover, we demonstrate that RB1CC1 and NAP1 are competitive in binding to the TAX1BP1 SKICH domain, but the presence of NAP1's FIP200-interacting region (FIR) motif can stabilize the ternary TAX1BP1/NAP1/RB1CC1 complex formation. Finally, we elucidate the molecular mechanism governing the selective interactions of TAX1BP1 with ATG8 family members by solving the structure of GABARAP in complex with the non-canonical LIR (LC3-interacting region) motif of TAX1BP1, which unveils a unique binding mode between LIR and ATG8 family protein. Collectively, our findings provide mechanistic insights into the interactions of TAX1BP1 with RB1CC1 and mammalian ATG8 family proteins and are valuable for further understanding the working mode and function of TAX1BP1 in autophagy.


Subject(s)
Autophagy , Cell Cycle Proteins , Animals , Autophagy-Related Protein 8 Family , Binding Sites , Kidney , Mammals
17.
Talanta ; 274: 125974, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38552476

ABSTRACT

The development of fast and accurate sensors for nerve agents holds immense significance for homeland security and public health. However, the humidity interference from ambient environments and poor sensitivity for trace nerve agents are largely unsolved problems. To overcome the problems, a humidity-independent two-dimensional photonic crystal (2-D PC) sensor is developed by exploiting UiO-66-NH2 2-D PC with excellent sensitivity coupled to a hydrophobic hydrogen-bonded organic framework (HOFs) for detection sarin simulant dimethyl methyl phosphonate (DMMP). Selective sensing results show that the HOFs@UiO-66-NH2 2-D PC sensor presents the outstanding DMMP specificity, and the limit of detection (LOD) for DMMP response of the sensor can reach 508 ± 68 ppb at room temperature. Water-resistant experiments demonstrate that the HOFs@UiO-66-NH2 2-D PC sensor shows excellent stability even under 80% relative humidity (RH). Moreover, the sensor also exhibits a rapid response/recovery time of 1 s/3 s and can maintain excellent sensing performance under heat-treatment of 200 °C and in the long-term storage (30 days). The adsorption kinetics and the hydrogen bond interaction are conducted to elucidate the mechanism of enhanced sensing DMMP properties. These results indicate the potential application of the sensor in the trace nerve agent's detection, especially in humidity environment.

18.
J Agric Food Chem ; 72(13): 7074-7088, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38525502

ABSTRACT

Acute kidney injury (AKI) is a common, multicause clinical condition that, if ignored, often progresses to chronic kidney disease (CKD) and end-stage kidney disease, with a mortality rate of 40-50%. However, there is a lack of universal treatment for AKI. Inflammation is the basic pathological change of early kidney injury, and inflammation can exacerbate AKI. Macrophages are the primary immune cells involved in the inflammatory microenvironment of kidney disease. Therefore, regulating the function of macrophages is a crucial breakthrough for the AKI intervention. Our team chemically modified pyxinol, an ocotillol-type ginsenoside, to prepare PJ16 with higher solubility and bioavailability. In vitro, using a model of macrophages stimulated by LPS, it was found that PJ16 could regulate macrophage function, including inhibiting the secretion of inflammatory factors, promoting phagocytosis, inhibiting M1 macrophages, and promoting M1 transition to the M2c macrophage. Further investigation revealed that PJ16 may shield renal tubular epithelial cells (HK-2) damaged by LPS in vitro. Based on this, PJ16 was validated in the animal model of unilateral ureteral obstruction, which showed that it improves renal function and inhibits renal tissue fibrosis by decreasing inflammatory responses, reducing macrophage inflammatory infiltration, and preferentially upregulating M2c macrophages. In conclusion, our study is the first to show that PJ16 resists AKI and fibrosis by mechanistically regulating macrophage function by modulating the phenotypic transition from M1 to M2 macrophages, mainly M2c macrophages.


Subject(s)
Acute Kidney Injury , Lipopolysaccharides , Animals , Lipopolysaccharides/adverse effects , Kidney/pathology , Acute Kidney Injury/drug therapy , Macrophages , Inflammation/pathology , Fibrosis
19.
Microorganisms ; 12(2)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38399812

ABSTRACT

The Gram-negative marine bacterium GXY010T, which has been isolated from the surface seawater of the western Pacific Ocean, is aerobic, non-motile and non-flagellated. Strain GXY010T exhibits growth across a temperature range of 10-42 °C (optimal at 37 °C), pH tolerance from 7.0 to 11.0 (optimal at 7.5) and a NaCl concentration ranging from 1.0 to 15.0% (w/v, optimal at 5.0%). Ubiquinone-8 (Q-8) was the predominant isoprenoid quinone in strain GXY010T. The dominant fatty acids (>10%) of strain GXY010T were iso-C15:0 (14.65%), summed feature 9 (iso-C17:1ω9c and/or 10-methyl C16:0) (12.41%), iso-C17:0 (10.85%) and summed feature 3 (C16:1ω7c and/or C16:1ω6c) (10.41%). Phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), unidentifiable glycolipid (GL) and four non-identifiable aminolipids (AL1-AL4) were the predominant polar lipids of strain GXY010T. The genomic DNA G+C content was identified as a result of 48.0% for strain GXY010T. The strain GXY010T genome consisted of 2,766,857 bp, with 2664 Open Reading Frames (ORFs), including 2586 Coding sequences (CDSs) and 78 RNAs. Strain GXY010T showed Average Nucleotide Identity (ANI) values of 73.4% and 70.6% and DNA-DNA hybridization (DDH) values of 19.2% and 14.5% with reference species Pseudidiomarina tainanensis MCCC 1A02633T (=PIN1T) and Pseudidiomarina taiwanensis MCCC 1A00163T (=PIT1T). From the results of the polyphasic analysis, a newly named species, Pseudidiomarina fusca sp. nov. within the genus Pseudidiomarina, was proposed. The type strain of Pseudidiomarina fusca is GXY010T (=JCM 35760T = MCCC M28199T = KCTC 92693T).

20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 138-145, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38387912

ABSTRACT

OBJECTIVE: To investigate the mechanism and clinical value of nicotinamide phosphoribosyltransferase (NAMPT) in multiple myeloma (MM). METHODS: RT-qPCR and Western blot were used to detect the expression of NAMPT in MM cells and normal bone marrow mononuclear cells. The biological function of NAMPT was analyzed by cell proliferation and apoptosis assay, small interfering RNA silencing, overexpression assay and chromatin immunoprecipitation assay. RESULTS: The mRNA and protein expression levels of NAMPT in MM cell lines (MM1R, MM1S, U266 and RPMI-8226) were significantly higher than those in normal bone marrow mononuclear cells (P < 0.001), and were most obvious in U266 cells. Compared with Si-NC group, the proliferation of U266 cells in Si-NAMPT group was significantly inhibited at 24, 48 and 72 h after transfection (P =0.006, P < 0.001, P =0.001), and the apoptosis rate of U266 cells was significantly increased at 48 h after transfection (P < 0.001). Compared with Flag-NC group, U266 cell proliferation in Flag-NAMPT group was significantly increased (P =0.003, P =0.002, P < 0.001), while the apoptosis rate decreased significantly at 48 h after transfection. The expression of NAMPT in U266 cells was regulated by XBP1 at transcriptional level. The proliferation rate of U266 cells with XBP1 or NAMPT stable knockout or MKC3946 pretreated with bortezomib was significantly decreased, the levels of BCL-2 mRNA and protein were also significantly decreased, while the levels of BAX mRNA and protein were significantly increased, moreover, the cleavage degree of caspase-3 significantly decreased, while caspase-3/7 activity increased dramatically (P < 0.05). CONCLUSIONS: The high expression of NAMPT in MM cell line can promote MM cell proliferation and inhibit apoptosis. NAMPT is regulated by IRE1α-XBP1 signaling pathway in U266 cells. Stable knockdown of NAMPT or blocking of IRE1α-XBP1 pathway can significantly increase the sensitivity of U266 cells to bortezomib.


Subject(s)
Multiple Myeloma , Humans , Apoptosis , Bortezomib/pharmacology , Caspase 3 , Cell Line, Tumor , Cell Proliferation , Clinical Relevance , Endoribonucleases , Multiple Myeloma/genetics , Nicotinamide Phosphoribosyltransferase , Protein Serine-Threonine Kinases , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...