Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Dev Dyn ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822685

ABSTRACT

BACKGROUND: Approximately 7% of the males exhibit reduced fertility; however, the regulatory genes and pathways involved remain largely unknown. TBC1 domain family member 21 (TBC1D21) contains a conserved RabGAP catalytic domain that induces GDP/GTP exchange to inactivate Rabs by interacting with microtubules. We previously reported that Tbc1d21-null mice exhibit severe sperm tail defects with a disrupted axoneme, and that TBC1D21 interacts with RAB10. However, the pathological mechanisms underlying the Tbc1d21 loss-induced sperm tail defects remain unknown. RESULTS: Murine sperm from wild-type and Tbc1d21-null mice were comparatively analyzed using proteomic assays. Over 1600 proteins were identified, of which 15 were significantly up-regulated in Tbc1d21-null sperm. Notably, several tektin (TEKT) family proteins, belonging to a type of intermediate filament critical for stabilizing the microtubular structure of cilia and flagella, were significantly up-regulated in Tbc1d21-/- sperm. We also found that TBC1D21 interacts with TEKT1. In addition, TEKT1 co-localized with RAB10 during sperm tail formation. Finally, we found Tbc1d21-null sperm exhibited abnormal accumulation of TEKT1 in the midpiece region, accompanied by disrupted axonemal structures. CONCLUSIONS: These results reveal that TBC1D21 modulates TEKTs protein localization in the axonemal transport system during sperm tail formation.

2.
Front Mol Biosci ; 11: 1339973, 2024.
Article in English | MEDLINE | ID: mdl-38845779

ABSTRACT

Background: In recent years, the incidence of insulin resistance is increasing, and it can cause a variety of Metabolic syndrome. Ginsenosides have been clinically proven to improve fat metabolism and reduce insulin resistance, but their components and mechanism of action are still unclear. Objective: Ginsenoside, a bioactive compound derived from ginseng, exhibits significant potential in treating obesity, diabetes, and metabolic disorders. Despite evidence supporting its efficacy in ameliorating insulin resistance (IR) in obesity, the specific bioactive components and underlying mechanisms remain obscure. In this study, we endeavored to elucidate the potential molecular targets and pathways influenced by ginsenoside Rh3 (GRh3) to ameliorate IR in liver tissue. We employed a comprehensive approach that integrates system pharmacology and bioinformatics analysis. Materials and methods: Our methodology involved the identification of candidate targets for GRh3 and the profiling of differentially expressed genes (DEGs) related to IR in individuals with insulin resistance. The coalescence of candidate targets and DEGs facilitated the construction of a "GRh3-targets-disease" network for each tissue type, ultimately yielding 38 shared target genes. Subsequently, we conducted pathway enrichment analysis, established protein-protein interaction (PPI) networks, and identified hub targets among the GRh3 targets and IR-related DEGs. Additionally, we conducted animal experiments to corroborate the role of these hub targets in the context of GRh3. Results: Our investigation identified a total of 38 overlapping targets as potential candidates. Notably, our analysis revealed crucial hub targets such as EGFR, SRC, ESR1, MAPK1, and CASP3, alongside implicated signaling pathways, including those related to insulin resistance, the FoxO signaling pathway, the PPAR signaling pathway, and the IL-17 signaling pathway. This study establishes a robust foundation for the mechanisms underlying GRh3's efficacy in mitigating IR. Furthermore, these results suggest that GRh3 may serve as a representative compound within the ginsenoside family. Conclusion: This study elucidates the potential molecular targets and associated pathways through which GRh3 ameliorates IR, showcasing its multifaceted nature, spanning multiple targets, pathways, and mechanisms. These findings establish a robust foundation for subsequent experimental inquiries and clinical applications.

3.
Front Endocrinol (Lausanne) ; 15: 1338889, 2024.
Article in English | MEDLINE | ID: mdl-38469144

ABSTRACT

Background: Nonalcoholic steatohepatitis (NASH) is the advanced stage of nonalcoholic fatty liver disease (NAFLD), one of the most prevalent chronic liver diseases. The effectiveness of bariatric surgery in treating NASH and preventing or even reversing liver fibrosis has been demonstrated in numerous clinical studies, but the underlying mechanisms and crucial variables remain unknown. Methods: Using the GSE135251 dataset, we examined the gene expression levels of NASH and healthy livers. Then, the differentially expressed genes (DEGs) of patients with NASH, at baseline and one year after bariatric surgery, were identified in GSE83452. We overlapped the hub genes performed by protein-protein interaction (PPI) networks and DEGs with different expression trends in both datasets to obtain key genes. Genomic enrichment analysis (GSEA) and genomic variation analysis (GSVA) were performed to search for signaling pathways of key genes. Meanwhile, key molecules that regulate the key genes are found through the construction of the ceRNA network. NASH mice were induced by a high-fat diet (HFD) and underwent sleeve gastrectomy (SG). We then cross-linked the DEGs in clinical and animal samples using quantitative polymerase chain reaction (qPCR) and validated the key genes. Results: Seven key genes (FASN, SCD, CD68, HMGCS1, SQLE, CXCL10, IGF1) with different expression trends in GSE135251 and GSE83452 were obtained with the top 30 hub genes selected by PPI. The expression of seven key genes in mice after SG was validated by qPCR. Combined with the qPCR results from NASH mice, the four genes FASN, SCD, HMGCS1, and CXCL10 are consistent with the biological analysis. The GSEA results showed that the 'cholesterol homeostasis' pathway was enriched in the FASN, SCD, HMGCS1, and SQLE high-expression groups. The high-expression groups of CD68 and CXCL10 were extremely enriched in inflammation-related pathways. The construction of the ceRNA network obtained microRNAs and ceRNAs that can regulate seven key genes expression. Conclusion: In summary, this study contributes to our understanding of the mechanisms by which bariatric surgery improves NASH, and to the development of potential biomarkers for the treatment of NASH.


Subject(s)
Bariatric Surgery , MicroRNAs , Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/surgery , MicroRNAs/genetics , Protein Interaction Maps
4.
Mol Neurobiol ; 61(2): 1119-1139, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37688710

ABSTRACT

Although uncoupling protein 4 (UCP4) is the most abundant protein reported in the brain, the biological function of UCP4 in cerebellum and pathological outcome of UCP4 deficiency in cerebellum remain obscure. To evaluate the role of Ucp4 in the cerebellar Purkinje cells (PCs), we generated the conditional knockdown of Ucp4 in PCs (Pcp2cre;Ucp4fl/fl mice) by breeding Ucp4fl/fl mice with Pcp2cre mice. Series results by Western blot, immunofluorescent staining, and triple RNAscope in situ hybridization confirmed the specific ablation of Ucp4 in PCs in Pcp2cre;Ucp4fl/fl mice, but did not affect the expression of Ucp2, the analog of Ucp4. Combined behavioral tests showed that Pcp2cre;Ucp4fl/fl mice displayed a characteristic bradykinesia in the spontaneous movements. The electromyogram recordings detection excluded the possibility of hypotonia in Pcp2cre;Ucp4fl/fl mice. And the electrical patch clamp recordings showed the altered properties of PCs in Pcp2cre;Ucp4fl/fl mice. Moreover, transmission electron microscope (TEM) results showed the increased mitochondrial circularity in PCs; ROS probe imaging showed the increased ROS generation in molecular layer; and finally, microplate reader assay showed the significant changes of mitochondrial functions, including ROS, ATP, and MMP in the isolated cerebellum tissue. The results suggested that the specific knockdown of mitochondrial protein Ucp4 could damage PCs possibly by attacking their mitochondrial function. The present study is the first to report a close relationship between UCP4 deletion with PCs impairment, and suggests the importance of UCP4 in the substantial support of mitochondrial function homeostasis in bradykinesia. UCP4 might be a therapeutic target for the cerebellar-related movement disorder.


Subject(s)
Hypokinesia , Purkinje Cells , Animals , Mice , Brain , Cerebellum , Hypokinesia/metabolism , Purkinje Cells/metabolism , Reactive Oxygen Species/metabolism
5.
J Cell Mol Med ; 28(2): e18031, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37937809

ABSTRACT

Approximately 10%-15% of couples worldwide are infertile, and male factors account for approximately half of these cases. Teratozoospermia is a major cause of male infertility. Although various mutations have been identified in teratozoospermia, these can vary among ethnic groups. In this study, we performed whole-exome sequencing to identify genetic changes potentially causative of teratozoospermia. Out of seven genes identified, one, ATP/GTP Binding Protein 1 (AGTPBP1), was characterized, and three missense changes were identified in two patients (Affected A: p.Glu423Asp and p.Pro631Leu; Affected B: p.Arg811His). In those two cases, severe sperm head and tail defects were observed. Moreover, AGTPBP1 localization showed a fragmented pattern compared to control participants, with specific localization in the neck and annulus regions. Using murine models, we found that AGTPBP1 is localized in the manchette structure, which is essential for sperm structure formation. Additionally, in Agtpbp1-null mice, we observed sperm head and tail defects similar to those in sperm from AGTPBP1-mutated cases, along with abnormal polyglutamylation tubulin and decreasing △-2 tubulin levels. In this study, we established a link between genetic changes in AGTPBP1 and human teratozoospermia for the first time and identified the role of AGTPBP1 in deglutamination, which is crucial for sperm formation.


Subject(s)
Infertility, Male , Serine-Type D-Ala-D-Ala Carboxypeptidase , Teratozoospermia , Humans , Male , Animals , Mice , Teratozoospermia/genetics , Teratozoospermia/metabolism , Tubulin/metabolism , Semen/metabolism , Spermatozoa/metabolism , Sperm Head/metabolism , Flagella/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Mutation , GTP-Binding Proteins/metabolism , Serine-Type D-Ala-D-Ala Carboxypeptidase/genetics , Serine-Type D-Ala-D-Ala Carboxypeptidase/metabolism
6.
BMC Genomics ; 24(1): 760, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082218

ABSTRACT

BACKGROUND: The functional roles of the Wall Associated Kinase (WAK) and Wall Associated Kinase Like (WAKL) families in cellular expansion and developmental processes have been well-established. However, the molecular regulation of these kinases in maize development is limited due to the absence of comprehensive genome-wide studies. RESULTS: Through an in-depth analysis, we identified 58 maize WAKL genes, and classified them into three distinct phylogenetic clusters. Moreover, structural prediction analysis showed functional conservation among WAKLs across maize. Promoter analysis uncovered the existence of cis-acting elements associated with the transcriptional regulation of ZmWAKL genes by Gibberellic acid (GA). To further elucidate the role of WAKL genes in maize kernels, we focused on three highly expressed genes, viz ZmWAKL38, ZmWAKL42 and ZmWAKL52. Co-expression analyses revealed that their expression patterns exhibited a remarkable correlation with GA-responsive transcription factors (TF) TF5, TF6, and TF8, which displayed preferential expression in kernels. RT-qPCR analysis validated the upregulation of ZmWAKL38, ZmWAKL42, ZmWAKL52, TF5, TF6, and TF8 following GA treatment. Additionally, ZmWAKL52 showed significant increase of transcription in the present of TF8, with ZmWAKL52 localizing in both the plasma membrane and cell wall. TF5 positively regulated ZmWAKL38, while TF6 positively regulated ZmWAKL42. CONCLUSIONS: Collectively, these findings provide novel insights into the characterization and regulatory mechanisms of specific ZmWAKL genes involved in maize kernel development, offering prospects for their utilization in maize breeding programs.


Subject(s)
Plant Breeding , Zea mays , Humans , Zea mays/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant
7.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(8): 779-784, 2023 Aug 15.
Article in Chinese | MEDLINE | ID: mdl-37668023

ABSTRACT

With the deepening of clinical research, the management of neonatal respiratory distress syndrome (RDS) needs to be optimized and improved. This article aims to introduce the 2022 European guideline on the management of neonatal RDS, focusing on its key updates. The guide has optimized the management of risk prediction for preterm birth, maternal referral, application of prenatal corticosteroids, application of lung protective ventilation strategies, and general care for infants with RDS. The guideline is mainly applicable to the management of RDS in neonates with gestational age greater than 24 weeks.


Subject(s)
Premature Birth , Respiratory Distress Syndrome, Newborn , Female , Humans , Infant, Newborn , Pregnancy , Family , Gestational Age , Respiration, Artificial , Respiratory Distress Syndrome, Newborn/therapy
8.
Antioxidants (Basel) ; 12(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37759974

ABSTRACT

Oxidative stress is the etiology for 30-80% of male patients affected by infertility, which is a major health problem worldwide. Klotho protein is an aging suppressor that functions as a humoral factor modulating various cellular processes including antioxidation and anti-inflammation, and its dysregulation leads to human pathologies. Male mice lacking Klotho are sterile, and decreased Klotho levels in the serum are observed in men suffering from infertility with lower sperm counts. However, the mechanism by which Klotho maintains healthy male fertility remains unclear. Klotho haplodeficiency (Kl+/-) accelerates fertility reduction by impairing sperm quality and spermatogenesis in Kl+/- mice. Testicular proteomic analysis revealed that loss of Klotho predominantly disturbed oxidation and the glutathione-related pathway. We further focused on the glutathione-S-transferase (GST) family which counteracts oxidative stress in most cell types and closely relates with fertility. Several GST proteins, including GSTP1, GSTO2, and GSTK1, were significantly downregulated, which subsequently resulted in increased levels of the lipid peroxidation product 4-hydroxynonenal and apoptosis in murine testis with low or no expression of Klotho. Taken together, the loss of one Kl allele accelerates male fecundity loss because diminished antioxidant capability induces oxidative injury in mice. This is the first study that highlights a connection between Klotho and GST proteins.

9.
Front Immunol ; 14: 1194738, 2023.
Article in English | MEDLINE | ID: mdl-37564641

ABSTRACT

Background: Macrophages are considered an essential source of inflammatory cytokines, which play a pivotal role in the development of diabetes and its sequent complications. Therefore, a better understanding of the intersection between the development of diabetes and macrophage is of massive importance. Objectives: In this study, we performed an informative bibliometric analysis to enlighten relevant research directions, provide valuable metrics for financing decisions, and help academics to gain a quick understanding of the current macrophage-related diabetes studies knowledge domain. Methods: The Web of Science Core Collection database was used for literature retrieval and dataset export. Bibliometrix R-package was performed to conduct raw data screening, calculating, and visualizing. Results: Between 2000 and 2022, the annual publication and citation trends steadily increased. Wu Yonggui was the scholar with the most published papers in this field. The institute with the highest number of published papers was the University of Michigan. The most robust academic collaboration was observed between China and the United States of America. Diabetologia was the journal that published the most relevant publications. The author's keywords with the highest occurrences were "inflammation", "diabetic nephropathy", and "obesity". In addition, "Macrophage polarization" was the current motor topic with potential research prospects. Conclusions: These comprehensive and visualized bibliometric results summarized the significant findings in macrophage-related diabetes studies over the past 20 years. It would enlighten subsequent studies from a macro viewpoint and is also expected to strengthen investment policies in future macrophage-related diabetes studies.

10.
Nat Commun ; 14(1): 4456, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488119

ABSTRACT

Oxidative stress plays a crucial role in the pathogenesis of hepatic encephalopathy (HE), but the mechanism remains unclear. GABAergic neurons in substantia nigra pars reticulata (SNr) contribute to the motor deficit of HE. The present study aims to investigate the effects of oxidative stress on HE in male mice. The results validate the existence of oxidative stress in both liver and SNr across two murine models of HE induced by thioacetamide (TAA) and bile duct ligation (BDL). Systemic mitochondria-targeted antioxidative drug mitoquinone (Mito-Q) rescues mitochondrial dysfunction and oxidative injury in SNr, so as to restore the locomotor impairment in TAA and BDL mice. Furthermore, the GAD2-expressing SNr population (SNrGAD2) is activated by HE. Both overexpression of mitochondrial uncoupling protein 2 (UCP2) targeted to SNrGAD2 and SNrGAD2-targeted chemogenetic inhibition targeted to SNrGAD2 rescue mitochondrial dysfunction in TAA-induced HE. These results define the key role of oxidative stress in the pathogenesis of HE.


Subject(s)
Hepatic Encephalopathy , Male , Animals , Mice , Oxidative Stress , Antioxidants , Bile Ducts , Thioacetamide
11.
Front Neurosci ; 17: 1059965, 2023.
Article in English | MEDLINE | ID: mdl-36816131

ABSTRACT

Mitochondrial networks are defined as a continuous matrix lumen, but the morphological feature of neuronal mitochondrial networks is not clear due to the lack of suitable analysis techniques. The aim of the present study is to develop a framework to capture and analyze the neuronal mitochondrial networks by using 4-step process composed of 2D and 3D observation, primary and secondary virtual reality (VR) analysis, with the help of artificial intelligence (AI)-powered Aivia segmentation an classifiers. In order to fulfill this purpose, we first generated the PCs-Mito-GFP mice, in which green fluorescence protein (GFP) could be expressed on the outer mitochondrial membrane specifically on the cerebellar Purkinje cells (PCs), thus all mitochondria in the giant neuronal soma, complex dendritic arborization trees and long projection axons of Purkinje cells could be easily detected under a laser scanning confocal microscope. The 4-step process resolved the complicated neuronal mitochondrial networks into discrete neuronal mitochondrial meshes. Second, we measured the two parameters of the neuronal mitochondrial meshes, and the results showed that the surface area (µm2) of mitochondrial meshes was the biggest in dendritic trees (45.30 ± 53.21), the smallest in granular-like axons (3.99 ± 1.82), and moderate in soma (27.81 ± 22.22) and silk-like axons (17.50 ± 15.19). These values showed statistically different among different subcellular locations. The volume (µm3) of mitochondrial meshes was the biggest in dendritic trees (9.97 ± 12.34), the smallest in granular-like axons (0.43 ± 0.25), and moderate in soma (6.26 ± 6.46) and silk-like axons (3.52 ± 4.29). These values showed significantly different among different subcellular locations. Finally, we found both the surface area and the volume of mitochondrial meshes in dendritic trees and soma within the Purkinje cells in PCs-Mito-GFP mice after receiving the training with the simulating long-term pilot flight concentrating increased significantly. The precise reconstruction of neuronal mitochondrial networks is extremely laborious, the present 4-step workflow powered by artificial intelligence and virtual reality reconstruction could successfully address these challenges.

12.
Perfusion ; 38(1): 214-219, 2023 01.
Article in English | MEDLINE | ID: mdl-34617832

ABSTRACT

Aluminium phosphide (ALP) and aluminium zinc phosphide (ZnP), the two main ingredients of fumigation drugs, are commonly used to kill insects or rodents in grain. When exposed to water, highly toxic phosphine gas is released and absorbed through the respiratory or digestive tract. Phosphine gas could non-selectively block cytochrome oxidase, inhibit electron transfer and suppress oxidative phosphorylation, leading to cellular hypoxia and organ dysfunction. The characteristic clinical manifestations are refractory shock and metabolic acidosis with high mortality. However, patients with ALP poisoning have a chance to be cured. Here, we report a case of oral ALP poisoning that was successfully treated by extracorporeal membrane oxygenation (ECMO) combined with continuous renal replacement therapy (CRRT) during frequent ventricular fibrillation and cardiac dysfunction.


Subject(s)
Aluminum , Cardiopulmonary Resuscitation , Humans , Arrhythmias, Cardiac
13.
Molecules ; 27(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36234822

ABSTRACT

Constructing photocatalysts to promote hydrogen evolution and carbon dioxide photoreduction into solar fuels is of vital importance. The design and establishment of an S-scheme heterojunction system is one of the most feasible approaches to facilitate the separation and transfer of photogenerated charge carriers and obtain powerful photoredox capabilities for boosting photocatalytic performance. Herein, a zero-dimensional/one-dimensional S-scheme heterojunction composed of CdSe quantum dots and polymeric carbon nitride nanorods (CdSe/CN) is created and constructed via a linker-assisted hybridization approach. The CdSe/CN composites exhibit superior photocatalytic activity in water splitting and promoted carbon dioxide conversion performance compared with CN nanorods and CdSe quantum dots. The best efficiency in photocatalytic water splitting (10.2% apparent quantum yield at 420 nm irradiation, 20.1 mmol g-1 h-1 hydrogen evolution rate) and CO2 reduction (0.77 mmol g-1 h-1 CO production rate) was achieved by 5%CdSe/CN composites. The significantly improved photocatalytic reactivity of CdSe/CN composites primarily originates from the emergence of an internal electric field in the zero-dimensional/one-dimensional S-scheme heterojunction, which could greatly improve the photoinduced charge-carrier separation. This work underlines the possibility of employing polymeric carbon nitride nanostructures as appropriate platforms to establish highly active S-scheme heterojunction photocatalysts for solar fuel production.

14.
Medicina (Kaunas) ; 58(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36295569

ABSTRACT

Background and Objectives: Septins (SEPTs) are highly conserved GTP-binding proteins and the fourth component of the cytoskeleton. Polymerization of SEPTs contributes to several critical cellular processes such as cytokinesis, cytoskeletal remodeling, and vesicle transportation. In our previous study, we found that SEPT14 mutations resulted in teratozoospermia with >87% sperm morphological defects. SEPT14 interactors were also identified through proteomic assays, and one of the peptides was mapped to RAB3B and RAB3C. Most studies on the RAB3 family have focused on RAB3A, which regulates the exocytosis of neurotransmitters and acrosome reactions. However, the general expression and patterns of the RAB3 family members during human spermatogenesis, and the association between RAB3 and teratozoospermia owing to a SEPT14 mutation, are largely unknown. Materials and Methods: Human sperm and murine male germ cells were collected in this study and immunofluorescence analysis was applied on the collected sperm. Results: In this study, we observed that the RAB3C transcripts were more abundant than those of RAB3A, 3B, and 3D in human testicular tissues. During human spermatogenesis, the RAB3C protein is mainly enriched in elongated spermatids, and RAB3B is undetectable. In mature human spermatozoa, RAB3C is concentrated in the postacrosomal region, neck, and midpiece. The RAB3C signals were delocalized within human spermatozoa harboring the SEPT14 mutation, and the decreased signals were accompanied by a defective head and tail, compared with the healthy controls. To determine whether RAB3C is involved in the morphological formation of the head and tail of the sperm, we separated murine testicular tissue and isolated elongated spermatids for further study. We found that RAB3C is particularly expressed in the manchette structure, which assists sperm head shaping at the spermatid head, and is also localized at the sperm tail. Conclusions: Based on these results, we suggest that the localization of RAB3C proteins in murine and human sperm is associated with SEPT14 mutation-induced morphological defects in sperm.


Subject(s)
Teratozoospermia , Mice , Humans , Male , Animals , Teratozoospermia/genetics , Teratozoospermia/metabolism , Septins/genetics , Septins/metabolism , Proteomics , Semen/metabolism , Spermatozoa , GTP-Binding Proteins , Peptides/metabolism
15.
Hematology ; 27(1): 1019-1025, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36066282

ABSTRACT

OBJECTIVES: To retrospectively investigate the clinical characteristics, prognosis, treatment, and therapy outcome of Chinese patients with primary testicular lymphoma (PTL). METHODS: we collected data of 49 PTL patients from four hospitals over 13 years. The median age was 63 years old. We described the clinical characteristics of the patients including the laterality, serum lactate dehydrogenase (LDH), pathology classification, stage, International prognostic index (IPI) scores and more. RESULTS: Complete remission (CR) was achieved in 34 patients and partial remission (PR) in 3 patients; Progressive disease (PD) was detected in 11 patients, and 10 patients died. The average progression-free survival (PFS) of all patients was 43.92 months, and the average overall survival (OS) was 47.55 months. The Ann Arbor stage, IPI score, and LDH were associated with OS, while Ann Arbor stage, IPI score, LDH, and histotype were significantly associated with PFS. Chemotherapy and radiotherapy following orchiectomy was associated with a significantly longer PFS. CONCLUSION: Most patients can achieve CR after induced therapy or orchiectomy. However, there are many associated prognostic factors.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Disease-Free Survival , Humans , Middle Aged , Prognosis , Progression-Free Survival , Remission Induction , Retrospective Studies
16.
Article in English | MEDLINE | ID: mdl-36142039

ABSTRACT

The development of traffic infrastructure involves massive land use changes along the transportation routes and stimulates urban sprawl at transfer nodes, leading to a degradation in ecosystem services, including soil conservation. For developing countries, especially for China, it is very important to differentiate the influences between different standards of traffic infrastructure associated with the different administrative levels of the regions where they are constructed on soil conservation. In this study, we attempt to analyze the differences in the influence of accessibility at different levels on soil conservation, for the case study area in Hunan province in China. The results indicate that: (1) traffic conditions in Hunan province have witnessed continuous improvement, and the time taken to access mega-cities, prefecture-level cities, and county-level cities from various regions has been significantly reduced. (2) The total annual soil conservation in Hunan province is maintained at approximately 2.93 × 109 t. However, the spatial heterogeneity shows severe degradation in regions with lower accessibility, and weak enhancement in regions with higher accessibility. (3) A negative spatial autocorrelationship exists between accessibility and soil conservation at all levels, with the increase of administrative rank of the destination making it more obvious and intense, along with an increased tendency for the spatial distribution to concentrate. (4) Building more railways and highways from prefecture-level cities with LH clusters nearby as transfer nodes, instead of the construction of national roads and provincial roads that diverge from these railways and highways, will help limit the massive expansion of construction land and soil erosion within prefecture-level cities, rather than spreading to towns of LH clusters. This research provides an important scientific basis for future regional planning and traffic infrastructure construction, and also a reference for traffic infrastructure development in other geographically similar regions on a synchronous development stage in the world.


Subject(s)
Ecosystem , Soil , China , Cities , Conservation of Natural Resources , Transportation
17.
Front Plant Sci ; 13: 943050, 2022.
Article in English | MEDLINE | ID: mdl-35909761

ABSTRACT

The process of starch biosynthesis is a major developmental event that affects the final grain yield and quality in maize (Zea mays L.), and transcriptional regulation plays a key role in modulating the expression of the main players in the pathway. ZmBt2, which encodes the small subunits of AGPase, is a rate-controlling gene of the pathway; however, much remains unknown about its transcriptional regulation. Our earlier study identifies a short functional fragment of ZmBt2 promoter (394-bp), and further shows it contains multiple putative cis-acting regulatory elements, demonstrating that several transcription factors may govern ZmBt2 expression. Here, we identified a novel TCP transcription factor (TF), ZmTCP7, that interacted with the functional fragment of the ZmBt2 promoter in a yeast one hybrid screening system. We further showed that ZmTCP7 is a non-autonomous TF targeted to the nucleus and predominantly expressed in maize endosperm. Using promoter deletion analyzes by transient expression in maize endosperm protoplasts combined with electrophoretic mobility shift assays, we found that ZmTCP7 bound to GAACCCCAC elements on the ZmBt2 promoter to suppress its expression. Transgenic overexpression of ZmTCP7 in maize caused a significant repression of ZmBt2 transcription by ~77.58%, resulting in a 21.51% decrease in AGPase activity and a 9.58% reduction in the endosperm starch content of transgenic maize. Moreover, the expressions of ZmBt1, ZmSSI, ZmSSIIa, and ZmSSIIIa were increased, while those of ZmSh2 and ZmSSIV reduced significantly in the endosperm of the transgenic maize. Overall, this study shows that ZmTCP7 functions as a transcriptional repressor of ZmBt2 and a negative regulator of endosperm starch accumulation, providing new insights into the regulatory networks that govern ZmBt2 expression and starch biosynthesis pathway in maize.

18.
Int J Mol Sci ; 23(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897632

ABSTRACT

Glycogen synthase kinase-3 (GSK-3) is a nonreceptor serine/threonine protein kinase that is involved in diverse processes, including cell development, photomorphogenesis, biotic and abiotic stress responses, and hormone signaling. In contrast with the deeply researched GSK family in Arabidopsis and rice, maize GSKs' common bioinformatic features and protein functions are poorly understood. In this study, we identified 11 GSK genes in the maize (Zea mays L.) genome via homologous alignment, which we named Zeama;GSKs (ZmGSKs). The results of ZmGSK protein sequences, conserved motifs, and gene structures showed high similarities with each other. The phylogenetic analyses showed that a total of 11 genes from maize were divided into four clades. Furthermore, semi-quantitative RT-PCR analysis of the GSKs genes showed that ZmGSK1, ZmGSK2, ZmGSK4, ZmGSK5, ZmGSK8, ZmGSK9, ZmGSK10, and ZmGSK11 were expressed in all tissues; ZmGSK3, ZmGSK6, and ZmGSK7 were expressed in a specific organization. In addition, GSK expression profiles under hormone treatments demonstrated that the ZmGSK genes were induced under BR conditions, except for ZmGSK2 and ZmGSK5. ZmGSK genes were regulated under ABA conditions, except for ZmGSK1 and ZmGSK8. Finally, using the yeast two-hybrid and BiFC assay, we determined that clads II (ZmGSK1, ZmGSK4, ZmGSK7, ZmGSK8, and ZmGSK11) could interact with ZmBZR1. The results suggest that clade II of ZmGSKs is important for BR signaling and that ZmGSK1 may play a dominant role in BR signaling as the counterpart to BIN2. This study provides a foundation for the further study of GSK3 functions and could be helpful in devising strategies for improving maize.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3/metabolism , Hormones/metabolism , Phylogeny , Plant Proteins/metabolism , Protein Kinases/metabolism , Zea mays/genetics , Zea mays/metabolism
19.
Water Sci Technol ; 86(2): 367-379, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35906913

ABSTRACT

The degradation of coking wastewater using a manganese oxide ore acidic oxidation was investigated. This work was performed in three stages. Firstly, the advantageous degradation conditions were measured by the degradation tests, and under the optimal conditions percentage degradation was obtained of 91.6% chemical oxygen demand measured by potassium dichromate oxidation (CODcr), 94.7% total nitrogen (TN), 98.3% phenols, 98.2% fatty acid, 89.5% tar, and 98.9% sulphide for the oxidized effluent, simultaneously cogenerating a Mn2+concentration of 46.2 g/L for Mn-electrolytic stock solution. Secondly, the transformation analysis of the special chemical group of coking wastewater contaminants illustrated that the employment of manganese oxide ore generated the degradation of low and high molecular weight organics, especially causing polymers to break down into oligomers. Thirdly, the electrochemical characteristics of the interface between wastewater and ore revealed that the contaminant degradation of coking wastewater greatly depended on the oxidation capacity of the surface oxide species, involving a simple answer to the MnO2 oxidation for small-molecule organic materials and a strengthening response to the MnO·OH oxidation for high-weight molecule organic substances. The treatment of coking wastewater using the Mn-oxide ore acidic oxidation process is an effective and value-added method, which is particularly applicable to high-concentration coking wastewater.


Subject(s)
Coke , Water Pollutants, Chemical , Coke/analysis , Manganese Compounds , Oxidation-Reduction , Oxides/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
20.
J Colloid Interface Sci ; 622: 675-689, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35533482

ABSTRACT

Polymeric carbon nitride (CN) has evoked considerable attention in photocatalysis, however, its π-deficiency conjugated frameworks engendering weak visible-light absorption and rapid charge recombination hinder the practical utilizations. Herein, a novel donor-acceptor (D-A) conjugated polymer based on triptycene incorporated carbon nitride (T-CN) has been facilely prepared by thermal copolymerization of melamine and 2,6,14-triaminotriptycene. Combined with the density functional theory (DFT) calculations, it is found that the formation of intramolecular charge transfer and the extended π-conjugative effect in the D-A structure contribute to a broadened light-harvesting spectral range, a higher charge separation/transfer efficiency and more active sites of T-CN for photoredox reactions. The T-CN catalyst accomplished superior visible-light photocatalytic performance in both hydrogen evolving and carbon dioxide reduction. The optimal T-CN catalyst exhibited the highest hydrogen evolution rate of 80.9 ± 1.3 µmol·h-1 and carbon monoxide production rate of 8.1 ± 0.2 µmol·h-1, which are ca. 8-fold and 20-fold of bulk CN, respectively. The convenient strategy of constructing D-A conjugated structure opens up a new intriguing avenue toward the rational creation of efficient polymeric nanomaterials for versatile applications of solar fuel production.

SELECTION OF CITATIONS
SEARCH DETAIL
...