Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 269
Filter
1.
J Hazard Mater ; 474: 134820, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38843631

ABSTRACT

The admixture of heavy metals on struvite during the P recovery process from wastewater will affect its value for safe agricultural application, but it is not clear how to effectively separate heavy metals from struvite. Herein, a two-stage separation reactor (static and dynamic) has been developed to achieve efficient separation of heavy metals and struvite. The generation of struvite from real swine wastewater would naturally precipitate to the lowest layer under static conditions, leading to an enrichment of heavy metals (75 % Cu and 84 % Zn) in suspension. Meanwhile, phosphorus recovery from real swine wastewater results in the generation of a large amount of fines flowing out of the reactor due to the effects of suspended solids (SS), etc., making it necessary to recover phosphorus by static separation. For the dynamic separation step, we also analyzed the characteristics of struvite formation at different rotational speeds in a continuous reaction system. The results demonstrated that the shear rate of the fluid affects the particle size of struvite, which in turn determines the rate and the distribution of struvite in either primary or secondary recovery tanks. The implementation of zonal regulation in the flow field can produce a higher phosphorus efficiency (from 85.8 to 95.5 % at pH=8.1-8.2, from 93.8 to 98.5 % at pH=9.0-9.1) and a lower alkali consumption (55.56 % of alkali cost), which is favorable for the separation of struvite crystals and heavy metals (the amount of Cu and Zn metals separated increased by more than 50 %), and ultimately yield high quality of struvite. The findings in this study will provide insights for the separation and reduction of heavy metals through a combined method with dynamic and static in a continuous system, providing a reference for the safe application of struvite in agriculture.

2.
Environ Sci Pollut Res Int ; 31(29): 42133-42143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858288

ABSTRACT

Phosphorus recovery from wastewater is receiving more attention due to its non-renewable property. As copper (Cu) and zinc (Zn) usually occur in livestock wastewater, this study focused on metal sorption in struvite from swine wastewater and the release properties of granular struvite in solution with varying pH conditions (2, 4, 7). The results demonstrated pH values presented a slightly decreasing trend with increasing Cu/Zn ratio, and Zn exhibited higher sorption performance on struvite crystals than that of Cu. Under the high content of metals in the wastewater, Cu/Zn ratios in the wastewater contributed to varying metal binding forms and mechanisms, resulting in the difference in the leaching properties of nutrients and metal. For the granular struvite manufactured with the adhesion of alginate, the P release percentage achieved 30.3-40.5% after 96 h in the wastewater of pH 2, whereas they were only 5.63-8.92% and 1.05-1.50% in the wastewater of pH 4 and 7, respectively. Acid wastewater contributed to the release of two metals, and the release amount of Zn was higher than that of Cu, which is associated with their sorption capacity in crystals. During the latter soil leaching test of adding granular struvite, the NH4+-N and PO43--P concentration in the effluent ranged from 0.34 to 1.26 and 0.62 to 2.56 mg/L after 96 h, respectively. However, the Cu and Zn could not be measured due to lower than the detection limit under varying treatments. Struvite might be accompanied by quicker metal leaching and slower nutrient leaching when surface sorption dominates in wastewater with lower metal concentrations.


Subject(s)
Livestock , Metals, Heavy , Struvite , Wastewater , Wastewater/chemistry , Struvite/chemistry , Animals , Metals, Heavy/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid , Hydrogen-Ion Concentration
3.
J Org Chem ; 89(13): 9322-9335, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38905015

ABSTRACT

Pd-PEPPSI complexes of N-(4-indolyl)-N'-phenylimidazol-2-ylidene (IIn) ligands with a 5-isopropyl-4-indolyl moiety are synthesized and evaluated in heteroarene C-H arylation, Suzuki-Miyaura cross-coupling, and Buchwald-Hartwig amination reactions. The IIn-Pd complex bearing a 3,5-diisopropyl-4-indolyl substituent (C5) exhibits the best catalytic activity in this series and substantially outperforms commercial precatalyst PEPPSI-Pd-IPr. The results also suggest that the alkyl group at position 3 of the 4-indolyl moiety shows stronger impacts than that at position 5.

4.
J Am Chem Soc ; 146(27): 18592-18605, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38943624

ABSTRACT

Ascorbic acid (AA) has been attracting great attention with its emerging potential in T cell-dependent antitumor immunity. However, premature blood clearance and immunologically "cold" tumors severely compromise its immunotherapeutic outcomes. As such, the reversal of the immunosuppressive tumor microenvironment (TME) has been the premise for improving the effectiveness of AA-based immunotherapy, which hinges upon advanced AA delivery and amplified immune-activating strategies. Herein, a novel Escherichia coli (E. coli) outer membrane vesicle (OMV)-red blood cell (RBC) hybrid membrane (ERm)-camouflaged immunomodulatory nanoturret is meticulously designed based on gating of an AA-immobilized metal-organic framework (MOF) onto bortezomib (BTZ)-loaded magnesium-doped mesoporous silica (MMS) nanovehicles, which can realize immune landscape remodeling by chemotherapy-assisted ascorbate-mediated immunotherapy (CAMIT). Once reaching the acidic TME, the acidity-sensitive MOF gatekeeper and MMS core within the nanoturret undergo stepwise degradation, allowing for tumor-selective sequential release of AA and BTZ. The released BTZ can evoke robust immunogenic cell death (ICD), synergistically promote dendritic cell (DC) maturation in combination with OMV, and ultimately increase T cell tumor infiltration together with Mg2+. The army of T cells is further activated by AA, exhibiting remarkable antitumor and antimetastasis performance. Moreover, the CD8-deficient mice model discloses the T cell-dependent immune mechanism of the AA-based CAMIT strategy. In addition to providing a multifunctional biomimetic hybrid nanovehicle, this study is also anticipated to establish a new immunomodulatory fortification strategy based on the multicomponent-driven nanoturret for highly efficient T cell-activation-enhanced synergistic AA immunotherapy.


Subject(s)
Antineoplastic Agents , Ascorbic Acid , Metal-Organic Frameworks , T-Lymphocytes , Animals , Mice , Metal-Organic Frameworks/chemistry , Ascorbic Acid/chemistry , Ascorbic Acid/pharmacology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Immunotherapy , Bortezomib/chemistry , Bortezomib/pharmacology , Bortezomib/therapeutic use , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Escherichia coli/drug effects , Silicon Dioxide/chemistry , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Magnesium/chemistry , Nanoparticles/chemistry , Humans , Cell Line, Tumor , Tumor Microenvironment/drug effects , Drug Liberation
5.
Chemosphere ; 361: 142544, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844100

ABSTRACT

Nuclear energy is playing an increasingly important role on the earth, but the nuclear plants leaves a legacy of radioactive waste pollution, especially uranium-containing pollution. Straw biochar with wide sources, large output, low cost, and easy availability, has emerged as a promising material for uranium extraction from radioactive wastewater, but the natural biomass with suboptimal structure and low content of functional groups limits the efficiency. In this work, microbial etch was first came up to regulate the biochar's structure and function. The surface of the biochar becomes rougher and more microporous, and the mineral contents (Ca, P) indirectly increased by microbial etch. The biochar was modified by calcium phosphate and exhibited a remarkable uranium extraction capacity of 590.8 mg g-1 (fitted value). This work provides a cost-effective and sustainable method for preparing functionalized biochar via microbial etch, which has potential for application to uranium extraction from radioactive wastewater.


Subject(s)
Charcoal , Uranium , Wastewater , Charcoal/chemistry , Uranium/chemistry , Wastewater/chemistry , Radioactive Waste/analysis , Water Pollutants, Radioactive , Calcium Phosphates/chemistry
6.
Heliyon ; 10(9): e30617, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38774072

ABSTRACT

Autism spectrum disorder (ASD) is a group of developmental diseases characterized by social dysfunction and repetitive stereotype behaviors. Besides genetic mutations, environmental factors play important roles in the development of ASD. Valproic acid (VPA) is widely used for modeling environmental factor induced ASD in rodents. However, traditional VPA modeling is low-in-efficiency and the phenotypes often vary among different batches of experiments. To optimize this ASD-modeling method, we tested "two-hit" hypothesis by single or double exposure of VPA and poly:IC at the critical time points of embryonic and postnatal stage. The autistic-like behaviors of mice treated with two-hit schemes (embryonic VPA plus postnatal poly:IC, embryonic poly:IC plus postnatal VPA, embryonic VPA plus poly: IC, or postnatal VPA plus poly:IC) were compared with mice treated with traditional VPA protocol. The results showed that all single-hit and two-hit schemes produced core ASD phenotypes as VPA single treatment did. Only one group, namely, mice double-hit by VPA and poly:IC simultaneously at E12.5 showed severe impairment of social preference, social interaction and ultrasonic communication, as well as significant increase of grooming activity and anxiety-like behaviors, in comparation with mice treated with the traditional VPA protocol. These data demonstrated that embryonic two-hit of VPA and poly:IC is more efficient in producing ASD phenotypes in mice than the single-hit of VPA, indicating this two-hit scheme could be utilized for modeling environmental factors induced ASD.

7.
Front Behav Neurosci ; 18: 1387447, 2024.
Article in English | MEDLINE | ID: mdl-38813469

ABSTRACT

Introduction: Autism spectrum disorder (ASD) is a group of diseases often characterized by poor sociability and challenges in social communication. The anterior cingulate cortex (ACC) is a core brain region for social function. Whether it contributes to the defects of social communication in ASD and whether it could be physiologically modulated to improve social communication have been poorly investigated. This study is aimed at addressing these questions. Methods: Fragile X mental retardation 1 (FMR1) mutant and valproic acid (VPA)-induced ASD mice were used. Male-female social interaction was adopted to elicit ultrasonic vocalization (USV). Immunohistochemistry was used to evaluate USV-activated neurons. Optogenetic and precise target transcranial magnetic stimulation (TMS) were utilized to modulate anterior cingulate cortex (ACC) neuronal activity. Results: In wild-type (WT) mice, USV elicited rapid expression of c-Fos in the excitatory neurons of the left but not the right ACC. Optogenetic inhibition of the left ACC neurons in WT mice effectively suppressed social-induced USV. In FMR1-/-- and VPA-induced ASD mice, significantly fewer c-Fos/CaMKII-positive neurons were observed in the left ACC following USV compared to the control. Optogenetic activation of the left ACC neurons in FMR1-/- or VPA-pretreated mice significantly increased social activity elicited by USV. Furthermore, precisely stimulating neuronal activity in the left ACC, but not the right ACC, by repeated TMS effectively rescued the USV emission in these ASD mice. Discussion: The excitatory neurons in the left ACC are responsive to socially elicited USV. Their silence mediates the deficiency of social communication in FMR1-/- and VPA-induced ASD mice. Precisely modulating the left ACC neuronal activity by repeated TMS can promote the social communication in FMR1-/- and VPA-pretreated mice.

8.
mSystems ; 9(6): e0134823, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38742910

ABSTRACT

Escherichia coli (E. coli) is reported to be an important pathogen associated with calf diarrhea. Antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) pose a considerable threat to both animal and human health. However, little is known about the characterization of ARGs and VFGs presented in the gut microbiota of diarrheic calves caused by E. coli. In this study, we used multi-omics strategy to analyze the ARG and VFG profiles of Simmental calves with diarrhea caused by E. coli K99. We found that gut bacterial composition and their microbiome metabolic functions varied greatly in diarrheic calves compared to healthy calves. In total, 175 ARGs were identified, and diarrheal calves showed a significantly higher diversity and abundance of ARGs than healthy calves. Simmental calves with diarrhea showed higher association of VFGs with pili function, curli assembly, and ferrienterobactin transport of E. coli. Co-occurrence patterns based on Pearson correlation analysis revealed that E. coli had a highly significant (P < 0.0001) correlation coefficient (>0.8) with 16 ARGs and 7 VFGs. Metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Phylotype analysis of E. coli genomes showed that the predominant phylogroup B1 in diarrheic Simmental calves was associated with 10 ARGs and 3 VFGs. These findings provide an overview of the diversity and abundance of the gut microbiota in diarrheic calves caused by E. coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the calves affected with diarrhea.IMPORTANCESimmental is a well-recognized beef cattle breed worldwide. They also suffer significant economic losses due to diarrhea. In this study, fecal metagenomic analysis was applied to characterize the antibiotic resistance gene (ARG) and virulence factor gene (VFG) profiles of diarrheic Simmental calves. We identified key ARGs and VFGs correlated with Escherichia coli isolated from Simmental calves. Additionally, metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Our findings provide an insight into the diversity and abundance of the gut microbiota in diarrheic calves caused by Escherichia coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the diarrheal calves from cattle hosts.


Subject(s)
Cattle Diseases , Diarrhea , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Gastrointestinal Microbiome , Virulence Factors , Cattle , Animals , Virulence Factors/genetics , Diarrhea/veterinary , Diarrhea/microbiology , Diarrhea/genetics , Escherichia coli/genetics , Escherichia coli/pathogenicity , Escherichia coli/drug effects , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/genetics , Escherichia coli Infections/drug therapy , Cattle Diseases/microbiology , Cattle Diseases/genetics , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Drug Resistance, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Metabolomics , Multiomics
9.
ACS Nano ; 18(22): 14469-14486, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38770948

ABSTRACT

Glioblastoma (GBM) is a lethal brain tumor with high levels of malignancy. Most chemotherapy agents show serious systemic cytotoxicity and restricted delivery effectiveness due to the impediments of the blood-brain barrier (BBB). Immunotherapy has developed great potential for aggressive tumor treatments. Disappointingly, its efficacy against GBM is hindered by the immunosuppressive tumor microenvironment (TME) and BBB. Herein, a multiple synergistic immunotherapeutic strategy against GBM was developed based on the nanomaterial-biology interaction. We have demonstrated that this BM@MnP-BSA-aPD-1 can transverse the BBB and target the TME, resulting in amplified synergetic effects of metalloimmunotherapy and photothermal immunotherapy (PTT). The journey of this nanoformulation within the TME contributed to the activation of the stimulator of the interferon gene pathway, the initiation of the immunogenic cell death effect, and the inhibition of the programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) signaling axis. This nanomedicine revitalizes the immunosuppressive TME and evokes the cascade effect of antitumor immunity. Therefore, the combination of BM@MnP-BSA-aPD-1 and PTT without chemotherapeutics presents favorable benefits in anti-GBM immunotherapy and exhibits immense potential for clinical translational applications.


Subject(s)
Brain Neoplasms , Glioblastoma , Immunotherapy , Microglia , Tumor Microenvironment , Glioblastoma/therapy , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/drug therapy , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Humans , Animals , Mice , Microglia/drug effects , Microglia/metabolism , Microglia/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Photothermal Therapy , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism
10.
Cell Death Discov ; 10(1): 164, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575595

ABSTRACT

Hypoxic preconditioning (HPC) has been shown to improve organ tolerance to subsequent severe hypoxia or ischemia. However, its impact on intestinal ischemic injury has not been well studied. In this study, we evaluated the effects of HPC on intestinal ischemia in rats. Intestinal rehabilitation, levels of fatty acid oxidation (FAO) by-products, intestinal stem cells (ISCs), levels of hypoxia-inducible factor 1 subunit α (HIF-1α) and its downstream genes such as peroxisome proliferator-activated receptor α (PPARα), and carnitine palmitoyltransferase 1a (CPT1A) were assessed at distinct time intervals following intestinal ischemia with or without the interference of HIF-1α. Our data showed that HPC facilitates the restoration of the intestinal structure and enhances the FAO, by boosting intestinal stem cells. Additionally, HIF-1α, PPARα, and CPT1A mRNA and their protein levels were generally up-regulated in the small intestine of HPC rats as compared to the control group. Our vitro experiment also shows low-oxygen induces highly levels of HIF-1α and its downstream genes, with a concurrent increase in FAO products in IEC-6 cells. Furthermore, the above phenomenon could be reversed by silencing HIF-1α. In conclusion, we hypothesize that HPC can stimulate the activation of intestinal stem cells via HIF-1α/PPARα pathway-mediated FAO, thereby accelerating the healing process post ischemic intestinal injury.

11.
J Dairy Sci ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38608939

ABSTRACT

Ketosis, a commonly observed energy metabolism disorder in dairy cows during the peripartal period, is distinguished by increased concentrations of ß-hydroxybutyrate (BHB) in blood. This condition has a negative impact on milk production and quality, causing financial losses. An untargeted metabolomics approach was performed on plasma samples from cows between 5 and 7 DIM diagnosed as controls (CON, BHB <1.2 mM, n = 30), subclinically ketotic (SCK, 1.2 < BHB <3.0 mM, n = 30), or clinically ketotic (CK, BHB >3.0 mM, n = 30). Cows were selected from a commercial farm of 214 Holstein cows (average 305-d yield in the previous lactation of 35.42 ± 7.23 kg/d; parity, 2.41 ± 1.12; body condition score, 3.1 ± 0.45). All plasma and milk samples (n = 90) were subjected to Liquid Chromatography-Mass Spectrometry (LC-MS)-based metabolomic analysis. Statistical analyses was performed using the Graph Pad Prism 8.0, MetaboAnalyst 4.0 and R packages (version 4.1.3). Compared with the CON group, both SCK and CK groups had greater milk fat, freezing point, and fat-to-protein ratio and lower milk protein, lactose, solids-nonfat, and milk density. Within 21 d after calving, compared with CON, the SCK group experienced a reduction of 2.65 kg/d in milk yield, while the CK group experienced a decrease of 7.7 kg/d. Untargeted metabolomics analysis facilitated the annotation of a total of 5,259 and 8,423 metabolites in plasma and milk. Differentially affected metabolites were screened in CON vs. SCK, CON vs. CK, and SCK vs. CK (unpaired t-test, False discovery rate <0.05; and absolute value of log(2)-fold change >1.5). A total of 1,544 and 1,888 differentially affected metabolites were detected in plasma and milk. In plasma, glycerophospholipid metabolism, pyrimidine metabolism, tryptophan metabolism, sphingolipid metabolism, amino sugar and nucleotide sugar metabolism, phenylalanine metabolism, steroid hormone biosynthesis were identified as significant pathways. Weighted gene co-expression network analysis (WGCNA) indicated that tryptophan metabolism is a key pathway associated with the occurrence and development of ketosis. Increases in 5-Hydroxytryptophan and decreases in kynurenine and 3-indoleacetic acid in SCK and CK were suggestive of an impact at the gut level. The decrease of most glycerophospholipids indicated that ketosis is associated with disordered lipid metabolism. For milk, pyrimidine metabolism, purine metabolism, pantothenate and CoA biosynthesis, amino sugar and nucleotide sugar metabolism, nicotinate and nicotinamide metabolism, sphingolipid metabolism, fatty acid degradation were identified as significant pathways. The WGCNA indicated that purine and pyrimidine metabolism in plasma was highly correlated with milk yield during the peripartal period. Alterations in purine and pyrimidine metabolism characterized ketosis, with lower levels of these metabolites in both milk and blood underscoring reduced efficiency in nitrogen metabolism. Our results may help to establish a foundation for future research investigating mechanisms responsible for the occurrence and development of ketosis in peripartal cows.

12.
J Nanobiotechnology ; 22(1): 190, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637808

ABSTRACT

Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.


Subject(s)
Acute Lung Injury , Plants, Medicinal , Pneumonia, Viral , Pneumonia , Mice , Animals , Macrophages, Alveolar/metabolism , Lung/metabolism , Pneumonia, Viral/drug therapy , Acute Lung Injury/pathology , Mitochondria/pathology , gamma-Aminobutyric Acid/metabolism , Pneumonia/metabolism
13.
Neurosci Bull ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656419

ABSTRACT

The existence of neural stem cells (NSCs) in the adult mammalian nervous system, although small in number and restricted to the sub-ventricular zone of the lateral ventricles, the dentate gyrus of the hippocampus, and the olfactory epithelium, is a gift of evolution for the adaptive brain function which requires persistent plastic changes of these regions. It is known that most adult NSCs are latent, showing long cell cycles. In the past decade, the concept of quiescent NSCs (qNSCs) has been widely accepted by researchers in the field, and great progress has been made in the biology of qNSCs. Although the spontaneous neuronal regeneration derived from adult NSCs is not significant, understanding how the behaviors of qNSCs are regulated sheds light on stimulating endogenous NSC-based neuronal regeneration. In this review, we mainly focus on the recent progress of the developmental origin and regulatory mechanisms that maintain qNSCs under normal conditions, and that mobilize qNSCs under pathological conditions, hoping to give some insights for future study.

14.
Mater Horiz ; 11(12): 2937-2949, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38572753

ABSTRACT

An organic photoelectrochemical transistor (OPECT) is an organic electrochemical transistor (OECT) that utilizes light to toggle between ON and OFF states. The current response to light and voltage fluxes in aqueous media renders the OPECT ideal for the development of next-generation bioelectronic devices, including light-assisted biosensors, light-controlled logic gates, and artificial photoreceptors. However, existing OPECT architectures are complex, often requiring photoactive nanostructures prepared through labor-intensive synthetic methods, and despite this complexity, their performance remains limited. In this study, we develop aqueous electrolyte-compatible optoelectronic transistors using a single n-type semiconducting polymer. The n-type film performs multiple tasks: (1) gating the channel, (2) generating a photovoltage in response to light, and (3) coupling and transporting cations and electrons in the channel. We systematically investigate the photoelectrochemical properties of a range of n-type polymeric mixed conductors to understand the material requirements for maximizing phototransistor performance. Our findings contribute to the identification of crucial material and device properties necessary for constructing high-performance OPECTs with simplified design features and a direct interface with biological systems.

15.
Bioorg Med Chem ; 103: 117662, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38493730

ABSTRACT

Inhibition of the low fidelity DNA polymerase Theta (Polθ) is emerging as an attractive, synthetic-lethal antitumor strategy in BRCA-deficient tumors. Here we report the AI-enabled development of 3-hydroxymethyl-azetidine derivatives as a novel class of Polθ inhibitors featuring central scaffolding rings. Structure-based drug design first identified A7 as a lead compound, which was further optimized to the more potent derivative B3 and the metabolically stable deuterated compound C1. C1 exhibited significant antiproliferative properties in DNA repair-compromised cells and demonstrated favorable pharmacokinetics, showcasing that 3-hydroxymethyl-azetidine is an effective bio-isostere of pyrrolidin-3-ol and emphasizing the potential of AI in medicinal chemistry for precise molecular modifications.


Subject(s)
Azetidines , Neoplasms , Humans , DNA Repair , Azetidines/chemistry
16.
BMC Vet Res ; 20(1): 88, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459489

ABSTRACT

BACKGROUND: Strontium (Sr) has similar physicochemical properties as calcium (Ca) and is often used to evaluate the absorption of this mineral. Because the major route of Ca absorption in the bovine occurs in the rumen, it is essential to understand whether Sr impacts the ruminal epithelial cells and to what extent. RESULTS: In the present study, RNA sequencing and assembled transcriptome assembly were used to identify transcription factors (TFs), screening and bioinformatics analysis in bovine ruminal epithelial cells treated with Sr. A total of 1405 TFs were identified and classified into 64 families based on an alignment of conserved domains. A total of 174 differently expressed TFs (DE-TFs) were increased and 52 DE-TFs were decreased; the biological process-epithelial cell differentiation was inhibited according to the GSEA-GO analysis of TFs; The GO analysis of DE-TFs was enriched in the DNA binding. Protein-protein interaction network (PPI) found 12 hubs, including SMAD4, SMAD2, SMAD3, SP1, GATA2, NR3C1, PPARG, FOXO1, MEF2A, NCOA2, LEF1, and ETS1, which verified genes expression levels by real-time PCR. CONCLUSIONS: In this study, SMAD2, PPARG, LEF1, ETS1, GATA2, MEF2A, and NCOA2 are potential candidates that could be targeted by Sr to mediate cell proliferation and differentiation, as well as lipid metabolism. Hence, these results enhance the comprehension of Sr in the regulation of transcription factors and provide new insight into the study of Sr biological function in ruminant animals.


Subject(s)
Strontium , Transcription Factors , Humans , Cattle , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Strontium/pharmacology , Strontium/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Gene Expression Profiling/veterinary , Epithelial Cells/metabolism , Transcriptome , Calcium/metabolism
17.
Bioorg Chem ; 146: 107285, 2024 May.
Article in English | MEDLINE | ID: mdl-38547721

ABSTRACT

Cyclin-dependent kinases (CDKs) are critical cell cycle regulators that are often overexpressed in tumors, making them promising targets for anti-cancer therapies. Despite substantial advancements in optimizing the selectivity and drug-like properties of CDK inhibitors, safety of multi-target inhibitors remains a significant challenge. Macrocyclization is a promising drug discovery strategy to improve the pharmacological properties of existing compounds. Here we report the development of a macrocyclization platform that enabled the highly efficient discovery of a novel, macrocyclic CDK2/4/6 inhibitor from an acyclic precursor (NUV422). Using dihedral angle scan and structure-based, computer-aided drug design to select an optimal ring-closing site and linker length for the macrocycle, we identified compound 8 as a potent new CDK2/4/6 inhibitor with optimized cellular potency and safety profile compared to NUV422. Our platform leverages both experimentally-solved as well as generative chemistry-derived macrocyclic structures and can be deployed to streamline the design of macrocyclic new drugs from acyclic starting compounds, yielding macrocyclic compounds with enhanced potency and improved drug-like properties.


Subject(s)
Cyclin-Dependent Kinases , Protein Kinase Inhibitors , Structure-Activity Relationship , Cyclin-Dependent Kinase 2/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Drug Design , Drug Discovery
18.
Adv Mater ; 36(23): e2302624, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431796

ABSTRACT

Diluting organic semiconductors with a host insulating polymer is used to increase the electronic mobility in organic electronic devices, such as thin film transistors, while considerably reducing material costs. In contrast to organic electronics, bioelectronic devices such as the organic electrochemical transistor (OECT) rely on both electronic and ionic mobility for efficient operation, making it challenging to integrate hydrophobic polymers as the predominant blend component. This work shows that diluting the n-type conjugated polymer p(N-T) with high molecular weight polystyrene (10 KDa) leads to OECTs with over three times better mobility-volumetric capacitance product (µC*) with respect to the pristine p(N-T) (from 4.3 to 13.4 F V-1 cm-1 s-1) while drastically decreasing the amount of conjugated polymer (six times less). This improvement in µC* is due to a dramatic increase in electronic mobility by two orders of magnitude, from 0.059 to 1.3 cm2 V-1 s-1 for p(N-T):Polystyrene 10 KDa 1:6. Moreover, devices made with this polymer blend show better stability, retaining 77% of the initial drain current after 60 minutes operation in contrast to 12% for pristine p(N-T). These results open a new generation of low-cost organic mixed ionic-electronic conductors where the bulk of the film is made by a commodity polymer.

19.
Antioxidants (Basel) ; 13(2)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38397792

ABSTRACT

Ischemic stroke is a devastating disease leading to neurologic impairment. Compounding the issue is the very limited array of available interventions. The activation of a γ-aminobutyric acid (GABA) type A receptor (GABAAR) has been reported to produce neuroprotective properties during cerebral ischemia, but its mechanism of action is not yet fully understood. Here, in a rat model of photochemically induced cerebral ischemia, we found that muscimol, a GABAAR agonist, modulated GABAergic signaling, ameliorated anxiety-like behaviors, and attenuated neuronal damage in rats suffering cerebral ischemia. Moreover, GABAAR activation improved brain antioxidant levels, reducing the accumulation of oxidative products, which was closely associated with the NO/NOS pathway. Notably, the inhibition of autophagy markedly relieved the neuronal insult caused by cerebral ischemia. We further established an oxygen-glucose deprivation (OGD)-induced PC12 cell injury model. Both in vivo and in vitro experiments demonstrated that GABAAR activation obviously suppressed autophagy by regulating the AMPK-mTOR pathway. Additionally, GABAAR activation inhibited apoptosis through inhibiting the Bax/Bcl-2 pathway. These data suggest that GABAAR activation exerts neuroprotective effects during cerebral ischemia through improving oxidative stress and inhibiting autophagy and apoptosis. Our findings indicate that GABAAR serves as a target for treating cerebral ischemia and highlight the GABAAR-mediated autophagy signaling pathway.

20.
Eur J Orthop Surg Traumatol ; 34(3): 1609-1617, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38363348

ABSTRACT

STUDY DESIGN: A retrospective cohort study. OBJECTIVE: To compare the safety and clinical efficacy between using cement-augmented pedicle screws (CAPS) and conventional pedicle screws (CPS) for the treatment of lumbar degenerative patients with osteoporosis. Management of lumbar degenerative patients with osteoporosis undergoing spine surgery is challenging. The clinical efficacy and potential complications of the mid-term performance of the CAPS technique in the treatment of lumbar degenerative patients with osteoporosis remain to be evaluated. PATIENTS AND METHODS: The data of 131 lumbar degenerative patients with osteoporosis who were treated with screw fixation from May 2016 to December 2019 were retrospectively analyzed in this study. The patients were divided into the following two groups according to the type of screw used: (I) the CAPS group (n = 85); and (II) the CPS group (n = 46). Relevant data were compared between two groups, including the demographics data, clinical results and complications. RESULTS: The difference in the VAS, ODI and JOA scores at three and 6 months after the operation between the two groups was statistically significant (P < 0.05). At 12 months after surgery and the final follow-up, a significant difference in the fusion rate was found between the two groups (P < 0.05). Four cemented screws loosening were observed in the CAPS group (loosening rate 4/384, 1.04%) and 15 screws loosening were observed in the CPS group (loosening rate 15/214, 7.01%). In the CAPS group, a total of 384 augmented screws were used, and cement leakage was observed in 25 screws (25/384, 6.51%), but no obvious clinical symptoms or serious complications were observed. Adjacent vertebral fractures occurred in six patients in the CAPS group and one in the CPS group. CONCLUSIONS: CAPS technique is an effective strategy for the treatment of lumbar degenerative patients with osteoporosis, with a higher fusion rate and lower screw loosening rate than CPS.


Subject(s)
Osteoporosis , Pedicle Screws , Spinal Fusion , Humans , Retrospective Studies , Osteoporosis/complications , Bone Cements/therapeutic use , Treatment Outcome , Lumbar Vertebrae/surgery , Spinal Fusion/adverse effects , Spinal Fusion/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...