Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 22(1): 67, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041591

ABSTRACT

BACKGROUND: Natural killer (NK) cell-based immunotherapies have demonstrated substantial potential for the treatment of hematologic malignancies. However, its application is limited due to the difficulty in the production of a large number of NK cells in vitro and the insufficient therapeutic efficacy against solid tumors in vivo. Engineered antibodies or fusion proteins targeting activating receptors and costimulatory molecules of NK cells have been developed to encounter these problems. They are mostly produced in mammalian cells with high cost and long processing times. Yeast systems, such as Komagataella phaffii, present a convenient manipulation of microbial systems with the key advantages of improved folding machinery and low cost. RESULTS: In this study, we designed an antibody fusion protein scFvCD16A-sc4-1BBL, composed of the single chain variant fragment (scFv) of anti-CD16A antibody and the three extracellular domains (ECDs) of human 4-1BBL in a single-chain format (sc) with the GS linker, aiming to boost NK cell proliferation and activation. This protein complex was produced in the K. phaffii X33 system and purified by affinity chromatography and size exclusion chromatography. The scFvCD16A-sc4-1BBL complex showed comparable binding abilities to its two targets human CD16A and 4-1BB as its two parental moieties (scFvCD16A and monomer ECD (mn)4-1BBL). scFvCD16A-sc4-1BBL specifically stimulated the expansion of peripheral blood mononuclear cell (PBMC)-derived NK cells in vitro. Furthermore, in the ovarian cancer xenograft mouse model, adoptive NK cell infusion combined with intraperitoneal (i.p) injection of scFvCD16A-sc4-1BBL further reduced the tumor burden and prolonged the survival time of mice. CONCLUSION: Our studies demonstrate the feasibility of the expression of the antibody fusion protein scFvCD16A-sc4-1BBL in K. phaffii with favourable properties. scFvCD16A-sc4-1BBL stimulates PBMC-derived NK cell expansion in vitro and improves the antitumor activity of adoptively transferred NK cells in a murine model of ovarian cancer and may serve as a synergistic drug for NK immunotherapy in future research and applications.


Subject(s)
Leukocytes, Mononuclear , Ovarian Neoplasms , Female , Humans , Animals , Mice , Ligands , 4-1BB Ligand/therapeutic use , Killer Cells, Natural , Antibodies , Ovarian Neoplasms/drug therapy , Mammals
2.
Adv Mater ; 35(24): e2300381, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36917928

ABSTRACT

Although being transition metals, the Fenton-inactive group 3-4 elements (Sc, Y, La, Ti, Zr, and Hf) can easily lose all the outermost s and d electrons, leaving behind ionic sites with nearly empty outermost orbitals that are stable but inactive for oxygen involved catalysis. Here, it is demonstrated that the dynamic coordination network can turn these commonly inactive ionic sites into platinum-like catalytic centers for the oxygen reduction reaction (ORR). Using density functional theory calculations, a macrocyclic ligand coordinated yttrium single-atom (YN4 ) moiety is identified, which is originally ORR inactive because of the too strong binding of hydroxyl intermediate, while it can be activated by an axial ligand X through the covalency competition between YX and YOH bonds. Strikingly, it is also found that the binding force of the axially coordinated ligand is an effective descriptor, and the chlorine ligand is screened out with an optimal binding force that behaves self-adaptively to facilitate each ORR intermediate steps by dynamically changing its YCl covalency. These experiments validate that the as-designed YN4 -Cl moieties embedded within the carbon framework exhibit a high half-wave potential (E1/2 = 0.85 V) in alkaline media, the same as that of the commercial Pt/C catalyst .

3.
Adv Mater ; 34(28): e2202714, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35522047

ABSTRACT

In nature, the oxygen reduction reaction (ORR) is catalyzed by cytochrome P450 (CYP) enzymes containing heme iron centers with an axial thiolate ligand (FeN4 -S), which are among the most finely developed catalysts by natural selection. However, the exceptional ORR activity and selectivity of CYP enzymes originate from their non-rigid and self-adaptive coordination network with molecular ligands, which sacrifices the stability of the active motifs under electrochemical reaction conditions. Here, a design strategy to circumvent this dilemma by incorporating Fe-N4 motifs into carbon matrices instead of the protein scaffold and replacing the axial molecular thiolate ligand with a stable tellurium cluster (Ten ) is demonstrated. Theoretical calculations indicate a moderate interaction between Fe 3d and Te 5p orbitals once n > 2, allowing the FeTe bond to dynamically change its strength to adaptively facilitate the intermediate steps during the ORR process, which renders FeN4 -Ten active sites with superior ORR activity. This adaptive behavior mimics the conformational dynamics of an enzyme during the reaction, but retains the stability nature as a heterogeneous catalyst. The experiments validate that the as-designed catalyst with a characterized FeN4 -Ten structure outperforms the commercial Pt/C catalyst both on activity and stability.


Subject(s)
Metalloids , Tellurium , Ligands , Oxidation-Reduction , Oxygen/chemistry
4.
Chemistry ; 22(22): 7623-8, 2016 May 23.
Article in English | MEDLINE | ID: mdl-27075969

ABSTRACT

Native chemical ligation combined with desulfurization has become a powerful strategy for the chemical synthesis of proteins. Here we describe the use of a new thiol additive, methyl thioglycolate, to accomplish one-pot native chemical ligation and metal-free desulfurization for chemical protein synthesis. This one-pot strategy was used to prepare ubiquitin from two or three peptide segments. Circular dichroism spectroscopy and racemic protein X-ray crystallography confirmed the correct folding of ubiquitin. Our results demonstrate that proteins synthesized chemically by streamlined 9-fluorenylmethoxycarbonyl (Fmoc) solid-phase peptide synthesis coupled with a one-pot ligation-desulfurization strategy can supply useful molecules with sufficient purity for crystallographic studies.


Subject(s)
Peptides/chemistry , Ubiquitin/chemical synthesis , Crystallography, X-Ray , Fluorenes/chemistry , Ligation , Molecular Conformation , Solid-Phase Synthesis Techniques , Sulfhydryl Compounds/chemistry , Ubiquitin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...