Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Int J Oncol ; 64(2)2024 02.
Article in English | MEDLINE | ID: mdl-38063232

ABSTRACT

RAD51 recombinase is one of the DNA damage repair proteins associated with breast cancer risk. Apart from its function to maintain genomic integrity within the cell nucleus, RAD51 localized to the cytoplasm has also been implicated in breast malignancy. However, limited information exists on the roles of cytoplasmic vs. nuclear RAD51 in breast cancer progression and patient prognosis. In the present study, the association of cytoplasmic and nuclear RAD51 with clinical outcomes of patients with breast cancer was analyzed, revealing that elevated cytoplasmic RAD51 expression was associated with breast cancer progression, including increased cancer stage, grade, tumor size, lymph node metastasis and chemoresistance, along with reduced patient survival. By contrast, elevated nuclear RAD51 expression largely had the inverse effect. Results from in vitro investigations supported the cancer­promoting effect of RAD51, showing that overexpression of RAD51 promoted breast cancer cell growth, chemoresistance and metastatic ability, while knockdown of RAD51 repressed these malignant behaviors. The current data suggest that differential expression of subcellular RAD51 had a distinct impact on breast cancer progression and patient survival. Specifically, cytoplasmic RAD51 in contrast to nuclear RAD51 was potentially an adverse marker in breast cancer.


Subject(s)
Breast Neoplasms , Rad51 Recombinase , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cytoplasm/metabolism , Neoplasm Staging , Prognosis , Rad51 Recombinase/genetics
2.
Cancer Cell Int ; 23(1): 231, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798649

ABSTRACT

OBJECTIVES: RAD51 overexpression has been reported to serve as a marker of poor prognosis in several cancer types. This study aimed to survey the role of RAD51 in oral squamous cell carcinoma and whether RAD51 could be a potential therapeutic target. MATERIALS AND METHODS: RAD51 protein expression, assessed by immunohistochemical staining, was used to examine associations with survival and clinicopathological profiles of patients with oral squamous cell carcinoma. Lentiviral infection was used to knock down or overexpress RAD51. The influence of RAD51 on the biological profile of oral cancer cells was evaluated. Cell viability and apoptosis after treatment with chemotherapeutic agents and irradiation were analyzed. Co-treatment with chemotherapeutic agents and B02, a RAD51 inhibitor, was used to examine additional cytotoxic effects. RESULTS: Oral squamous cell carcinoma patients with higher RAD51 expression exhibited worse survival, especially those treated with adjuvant chemotherapy and radiotherapy. RAD51 overexpression promotes resistance to chemotherapy and radiotherapy in oral cancer cells in vitro. Higher tumorsphere formation ability was observed in RAD51 overexpressing oral cancer cells. However, the expression of oral cancer stem cell markers did not change in immunoblotting analysis. Co-treatment with RAD51 inhibitor B02 and cisplatin, compared with cisplatin alone, significantly enhanced cytotoxicity in oral cancer cells. CONCLUSION: RAD51 is a poor prognostic marker for oral squamous cell carcinoma. High RAD51 protein expression associates with resistance to chemotherapy and radiotherapy. Addition of B02 significantly increased the cytotoxicity of cisplatin. These findings suggest that RAD51 protein may function as a treatment target for oral cancer. TRIAL REGISTRATION: Number: KMUHIRB-E(I)-20190009 Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, approved on 20190130, Retrospective registration.

3.
Oncol Rep ; 50(4)2023 Oct.
Article in English | MEDLINE | ID: mdl-37615251

ABSTRACT

Fumarase hydratase (FH) is an enzyme that catalyzes the reversible hydration and dehydration of fumarate to malate in the tricarboxylic acid cycle. The present study addressed the role of FH in endometrial cancer and clinically observed that the expression of FH was significantly lower in endometrial cancer tissues compared with normal endometrial tissues and, furthermore, that the decreased FH expression in endometrial cancer tissues was significantly associated with increased tumor size and lymph node metastasis. Further analysis in in vitro study showed that cell proliferation, migration and invasion abilities were increased when the expression of FH in the endometrial cancer cells was knocked down, but, by contrast, overexpression of FH in endometrial cancer cells decreased cell proliferative, migratory and invasive abilities. Mechanistic studies showed that the expression of vimentin and twist, being two well-studied mesenchymal markers in endometrial cancer cells, were upregulated in fumarate hydratase-knockdowned cells. In addition, phosphokinase array analysis demonstrated that the expression of phospho-EGFR (Y1086), which promotes carcinogenesis in cancers, was increased in endometrial cancer cells when FH was knocked down. In conclusion, the present study suggested that FH is a tumor suppressor and inhibits endometrial cancer cell proliferation and metastasis by inactivation of EGFR. Further studies are required to clarify its role as a prognostic biomarker and therapeutic target for endometrial cancer.


Subject(s)
Endometrial Neoplasms , Fumarate Hydratase , Humans , Female , Fumarate Hydratase/genetics , Endometrial Neoplasms/genetics , Citric Acid Cycle , Carcinogenesis , ErbB Receptors/genetics
4.
Oral Dis ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37448179

ABSTRACT

OBJECTIVES: Previously, we demonstrated that IL17RB plays an essential role in lung cancer progression. This study aimed to determine whether IL17RB correlates with oral cancer and promotes oral cancer progression. SUBJECTS AND METHODS: IL17RB expression in oral cancer tissues and normal tissues was determined by immunohistochemistry staining, while the association of IL17RB expression with the clinicopathological characteristics of oral squamous cell carcinoma (OSCC) patients was analyzed and its correlation with progression-free survival and response to radiotherapy and chemotherapy in OSCC patients was also explored. Western blotting was performed to investigate the expression of IL17RB in various OSCC cell lines; moreover, transwell assay was performed to evaluate the effect of IL17RB expression on cell migration ability. RESULTS: In this study, we found that IL17RB was expressed higher in OSCC tissues compared to normal oral mucosa tissues and its expression was positively correlated with tumor size, lymph node metastasis, advanced cancer stage, and poor prognosis. In vitro study showed that IL17RB expression in OSCC cell lines as determined by Western blotting, was positively correlated with their migration ability. CONCLUSION: Clinical and in vitro studies suggest that IL17RB might serve as an independent risk factor and a therapeutic target for oral cancer.

5.
J Transl Med ; 21(1): 473, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37461111

ABSTRACT

BACKGROUND: Interleukin-1 receptor antagonist (IL-1RA), a member of the IL-1 family, has diverse roles in cancer development. However, the role of IL-1RA in oral squamous cell carcinoma (OSCC), in particular the underlying mechanisms, remains to be elucidated. METHODS: Tumor tissues from OSCC patients were assessed for protein expression by immunohistochemistry. Patient survival was evaluated by Kaplan-Meier curve analysis. Impact of differential IL-1RA expression on cultured OSCC cell lines was assessed in vitro by clonogenic survival, tumorsphere formation, soft agar colony formation, and transwell cell migration and invasion assays. Oxygen consumption rate was measured by Seahorse analyzer or multi-mode plate reader. PCR array was applied to screen human cancer stem cell-related genes, proteome array for phosphorylation status of kinases, and Western blot for protein expression in cultured cells. In vivo tumor growth was investigated by orthotopic xenograft in mice, and protein expression in xenograft tumors assessed by immunohistochemistry. RESULTS: Clinical analysis revealed that elevated IL-1RA expression in OSCC tumor tissues was associated with increased tumor size and cancer stage, and reduced survival in the patient group receiving adjuvant radiotherapy compared to the patient group without adjuvant radiotherapy. In vitro data supported these observations, showing that overexpression of IL-1RA increased OSCC cell growth, migration/invasion abilities, and resistance to ionizing radiation, whereas knockdown of IL-1RA had largely the opposite effects. Additionally, we identified that EGFR/JNK activation and SOX2 expression were modulated by differential IL-1RA expression downstream of mitochondrial metabolism, with application of mitochondrial complex inhibitors suppressing these pathways. Furthermore, in vivo data revealed that treatment with cisplatin or metformin-a mitochondrial complex inhibitor and conventional therapy for type 2 diabetes-reduced IL-1RA-associated xenograft tumor growth as well as EGFR/JNK activation and SOX2 expression. This inhibitory effect was further augmented by combination treatment with cisplatin and metformin. CONCLUSIONS: The current study suggests that IL-1RA promoted OSCC malignancy through mitochondrial metabolism-mediated EGFR/JNK activation and SOX2 expression. Inhibition of this mitochondrial metabolic pathway may present a potential therapeutic strategy in OSCC.


Subject(s)
Carcinoma, Squamous Cell , Diabetes Mellitus, Type 2 , Head and Neck Neoplasms , Metformin , Mouth Neoplasms , Humans , Animals , Mice , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , Interleukin 1 Receptor Antagonist Protein/pharmacology , Squamous Cell Carcinoma of Head and Neck , Cisplatin/pharmacology , Cell Line, Tumor , ErbB Receptors/metabolism , Metformin/pharmacology , Cell Proliferation , Cell Movement , SOXB1 Transcription Factors/pharmacology
6.
J Dent Sci ; 18(2): 781-790, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37021228

ABSTRACT

Background/purpose: Reviewing literature, sprouty 4 (SPRY4) has not been studied in human oral squamous cell carcinomas (OSCCs). The study aimed to examine SPRY4 expression in human oral squamous cell carcinogenesis. Materials and methods: A total of 95 OSCCs, 10 OPMDs with malignant transformation (MT), 17 OPMDs without MT, and six normal oral mucosa (NOM) samples were recruited for immunohistochemical staining; three OSCC tissues with normal tissue counterpart NOM were employed for Western blotting. Three human oral cancer cell lines (OCCLs), an oral precancer cell line (dysplastic oral keratinocyte, DOK), and a primary culture of normal oral keratinocytes (HOK) were used for Western blotting; OCCLs and HOK were employed for real-time quantitative reverse transcription-polymerase chain reaction. OCCLs were evaluated in terms of proliferation, migration, and invasion assays. Results: SPRY4 protein expression was significantly increased in OSCCs compared with NOM. Protein and mRNA SPRY4 expression in OCCLs were significantly elevated compared with HOK. Significant increases in the degrees of proliferation, migration, and invasion were noted in OCCLs with SPRY4 siRNA transfection compared with those without transfection. SPRY4 protein level was increased in OPMD with MT compared to OPMD without MT. SPRY4 protein was significant increase in DOK in comparison with HOK. SPRY4 protein expression was significantly increased from NOM and OPMD without MT to OSCC. SPRY4 protein expression in OCCLs was significantly enhanced compared with DOK and HOK respectively. Conclusion: Our results indicate that SPRY4 expression is possibly involved in human oral squamous cell carcinogenesis.

7.
J Dent Sci ; 18(1): 382-391, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36643266

ABSTRACT

Background/purpose: Transient receptor potential melastatin (TRPM) channel is involved in cell proliferation and cell survival. Eight members (TRPM1-8) are within the TRPM subfamily. The current study is aimed to investigate TRPM6 expression in human oral carcinogenesis. Materials and methods: Sixty-six oral squamous cell carcinomas (OSCCs), 47 oral potentially malignant disorders (OPMD) with moderate-severe epithelial dysplasia (ED), 28 OPMD with mild ED, and 33 normal oral mucosa (NOM) samples were subjected to immunohistochemical staining. Two human oral cancer cell lines (OCCLs), an oral premalignant cell line (DOK), and a normal oral keratinocyte culture (HOK) were used for Western blot analysis. OCCLs were evaluated for proliferation, migration, invasion assays, and intracellular calcium concentration. Results: TRPM6 protein expression in OSCC was significantly increased as compared with normal samples. Protein expression of TRPM6 in OCCLs was significantly higher as compared with HOK. Significant decreases in degrees of proliferation, migration, invasion, and intracellular calcium concentration were noted in OCCLs with TRPM6 siRNA transfection as compared with those without transfection. Significantly increased TRPM6 protein level was noted in OPMD with moderate-severe ED as compared with those with mild ED. Conclusion: Our results implicate that TRPM6 overexpression is potentially related to human oral carcinogenesis.

8.
Oncol Lett ; 25(1): 42, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36589668

ABSTRACT

Lung cancer is one of the leading causes of cancer mortality worldwide. As it is often first diagnosed only when cancer metastasis has already occurred, the development of effective biomarkers for the risk prediction of cancer metastasis, followed by stringent monitoring and the early treatment of high-risk patients, is essential for improving patient survival. Cancer cells exhibit alterations in metabolic pathways that enable them to maintain rapid growth and proliferation, which are quite different from the metabolic pathways of normal cells. Fumarate hydratase (FH, fumarase) is a well-known tricarboxylic acid cycle enzyme that catalyzes the reversible hydration/dehydration of fumarate to malate. The current study sought to investigate the relationship between FH expression levels and the outcome of patients with lung cancer. FH was knocked down in lung cancer cells using shRNA or overexpressed using a vector, and the effect on migration ability was assessed. Furthermore, the role of AMP-activated protein kinase (AMPK) phosphorylation and disabled homolog 2 in the underlying mechanism was investigated using an AMPK inhibitor approach. The results showed that in lung cancer tissues, low FH expression was associated with lymph node metastasis, tumor histology and recurrence. In addition, patients with low FH expression exhibited a poor overall survival in comparison with patients having high FH expression. When FH was overexpressed in lung cancer cells, cell migration was reduced with no effect on cell proliferation. Furthermore, the level of phosphorylated (p-)AMPK, an energy sensor molecule, was upregulated when FH was knocked down in lung cancer cells, and the inhibition of p-AMPK led to an increase in the expression of disabled homolog 2, a tumor suppressor protein. These findings suggest that FH may serve as an effective biomarker for predicting the prognosis of lung cancer and as a therapeutic mediator.

9.
Biomedicines ; 10(10)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36289750

ABSTRACT

The primary cause of breast cancer mortality is the metastatic invasion of cancerous stem cells (CSC). Cluster of differentiation 44 (CD44) is a well-known CSC marker in various cancers, as well as a key role player in metastasis and relapse of breast cancer. CD44 is a cell-membrane embedded protein, and it interacts with different proteins to regulate cancer cell behavior. Transcription factor forkhead box protein A2 (FOXA2) acts as an important regulator in multiple cancers, including breast cancer. However, the biological significance of CD44-FOXA2 association in breast cancer metastasis remains unclear. Herein, we observed that CD44 expression was higher in metastatic lymph nodes compared to primary tumors using a flow cytometric analysis. CD44 overexpression in breast cancer cell lines significantly promoted cell migration and invasion abilities, whereas the opposite effects occurred upon the knockdown of CD44. The stem cell array analysis revealed that FOXA2 expression was upregulated in CD44 knockdown cells. However, the knockdown of FOXA2 in CD44 knockdown cells reversed the effects on cell migration and invasion. Furthermore, we found that CD44 mediated FOXA2 localization in breast cancer cells through the AKT pathway. Moreover, the immunofluorescence assay demonstrated that AKT inhibitor wortmannin and AKT activator SC79 treatment in breast cancer cells impacted FOXA2 localization. Collectively, this study highlights that CD44 promotes breast cancer metastasis by downregulating nuclear FOXA2.

10.
Sci Rep ; 12(1): 15437, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104403

ABSTRACT

The tumor microenvironment represents one of the main obstacles in breast cancer treatment owing to the presence of heterogeneous stromal cells, such as adipose-derived stem cells (ADSCs), that may interact with breast cancer cells and promote cancer development. Resistin is an adipocytokine associated with adverse breast cancer progression; however, its underlying mechanisms in the context of the breast tumor microenvironment remain largely unidentified. Here, we utilized a transwell co-culture model containing patient-derived ADSCs and breast cancer cell lines to investigate their potential interaction, and observed that breast cancer cells co-cultured with resistin-treated ADSCs (R-ADSCs) showed enhanced cancer cell growth and metastatic ability. Screening by proteome arrays revealed that C-X-C motif chemokine ligand 5 (CXCL5) was released in the conditioned medium of the co-culture system, and phosphorylated ERK was increased in breast cancer cells after co-culture with R-ADSCs. Breast cancer cells treated with the recombinant proteins of CXCL5 showed similarly enhanced cell migration and invasion ability as occurred in the co-culture model, whereas application of neutralizing antibodies against CXCL5 reversed these phenomena. The orthotopic xenograft in mice by breast cancer cells after co-culture with R-ADSCs had a larger tumor growth and more CXCL5 expression than control. In addition, clinical analysis revealed a positive correlation between the expression of resistin and CXCL5 in both tumor tissues and serum specimens of breast cancer patients. The current study suggests that resistin-stimulated ADSCs may interact with breast cancer cells in the tumor microenvironment via CXCL5 secretion, leading to breast cancer cell malignancy.


Subject(s)
Breast Neoplasms , Resistin , Adipose Tissue/metabolism , Animals , Breast Neoplasms/pathology , Chemokine CXCL5/metabolism , Coculture Techniques , Female , Humans , Mice , Resistin/metabolism , Stem Cells , Tumor Microenvironment
11.
Cancers (Basel) ; 14(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36010966

ABSTRACT

The neuroactive alkaloids in betel quid (BQ) can induce BQ addiction. We conducted a case-control study to investigate the effects of BQ-associated DSM-5 symptoms, pathological behaviors, and BQ use disorder (BUD) on oral squamous cell carcinoma (OSCC) risk. A total of 233 patients with newly diagnosed and histopathologically confirmed OSCC and 301 sex- and age-matched controls were included. BQ-related DSM-5 symptoms in the 12 months prior to disease onset were used to measure psychiatric characteristics and BUD. Compared with nonchewers, chewers with the symptoms of unsuccessful cutdown of BQ consumption, neglecting major roles, social or interpersonal problems, abandoning or limiting activities, hazardous use, and continued use despite the awareness of the dangers had a 54.8-, 49.3-, 49.9-, 40.4-, 86.2-, and 42.9-fold higher risk of developing OSCC, respectively. Mild-to-moderate and severe BUD were, respectively, associated with a 8.2-8.5- and 42.3-fold higher OSCC risk, compared with BQ nonuse. Risky BQ use of pathological behavior was associated with a 12.5-fold higher OSCC risk in chewers with no BUD or mild BUD and a 65.0-fold higher risk in chewers with moderate-to-severe BUD (p for risk heterogeneity between the two BUD groups, 0.041). In conclusion, BQ-associated DSM-5 symptoms, pathological behaviors, and BUD severity are associated with the impact of BQ chewing on OSCC development. The pathological behavior of risky BQ use enhances OSCC risk in chewers with moderate-to-severe BUD. Preventing BUD in new BQ users and treating BUD in chewers who already have the disorder are two priorities in areas where BQ chewing is prevalent.

12.
J Pers Med ; 12(5)2022 May 21.
Article in English | MEDLINE | ID: mdl-35629265

ABSTRACT

Oral cancer is one of the highest-incidence malignancies worldwide, with the occurrence of oral squamous cell carcinoma (OSCC) being the most frequently diagnosed form. A barrier for oral cancer management may arise from tumor cells that possess properties of cancer stemness, which has been recognized as a crucial factor in tumor recurrence and metastasis. As such, understanding the molecular mechanisms underlying these tumor cells may provide insights for improving cancer treatment. MRE11 is the core protein of the RAD50/MRE11/NBS1 complex with a primary role in DNA damage repair, and it has been diversely associated with tumor development including OSCC. In this study, we aimed to investigate the engagement of CD44, a cancer stemness marker functioning in the control of cell growth and motility, in OSCC malignancy under the influence of MRE11. We found that overexpression of MRE11 enhanced CD44 expression and tumorsphere formation in OSCC cells, whereas knockdown of MRE11 reduced these phenomena. In addition, the MRE11-promoted tumorsphere formation or cell migration ability was compromised in OSCC cells carrying siRNA that targets CD44, as was the MRE11-promoted AKT phosphorylation. These were further supported by analyzing clinical samples, where higher CD44 expression was associated with lymph node metastasis. Additionally, a positive correlation between the expression of MRE11 and CD44, or that of CD44 and phosphorylated AKT, was observed in OSCC tumor tissues. Finally, the expression of CD44 was found to be higher in the metastatic lung nodules from mice receiving tail vein-injection with MRE11-overexpressing OSCC cells compared with control mice, and a positive correlation between CD44 and phosphorylated AKT was also observed in these metastatic lung nodules. Altogether, our current study revealed a previously unidentified mechanism linking CD44 and AKT in MRE11-promoted OSCC malignancy, which may shed light to the development of novel therapeutic strategies in consideration of this new pathway in OSCC.

13.
J Dent Sci ; 17(1): 78-88, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35028023

ABSTRACT

BACKGROUND/PURPOSE: Return of Ca2+ to endoplasmic reticulum is mediated by Orai/STIM-mediated store-operated Ca2+ entry (SOCE) channel. We aimed to investigate Orai1 and STIM1 expressions in human oral carcinogenesis. MATERIALS AND METHODS: Sixty-six oral squamous cell carcinomas (OSCCs), 14 oral potentially malignant disorders (OPMD) with moderate-severe oral epithelial dysplasia (OED), 19 OPMD with mild OED, and 14 normal oral mucosa (NOM) samples were subjected to immunohistochemical staining. Two human oral cancer cell lines (OCCLs), an oral premalignant cell line (DOK), and a normal oral keratinocyte culture (HOK) were used for Western blot and real-time quantitative reverse transcription-polymerase chain reaction. OCCLs were evaluated for proliferation, migration, and invasion assays. RESULTS: Orai1 and STIM1 protein and mRNA expressions in OSCC were significantly enhanced as compared with normal samples. Protein expressions of Orai1 and STIM1 in OCCLs were significantly enhanced as compared with HOK. Significant decreases in degrees of proliferation, migration and invasion were noted in OCCLs with Orai1 and STIM1 siRNA transfection as compared with those without transfection. Significantly increased Orai1 and STIM1 protein levels were noted in OPMD with moderate-severe OED as compared with those with mild OED. CONCLUSION: Our results indicate that Orai1 and STIM1 overexpression is associated with human oral carcinogenesis.

14.
J Pers Med ; 11(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34945828

ABSTRACT

BACKGROUND: Melatonin, produced by the pineal gland, is known for its antioxidant, oncostatic, and anti-inflammatory properties. However, studies on serum melatonin levels in different cancer types have yielded conflicting results, and little is known about the clinical significance of serum melatonin in oral squamous cell carcinoma (OSCC) in the Southern Asian population. Therefore, we explored its role in OSCC in this study. METHODS: A total of 67 male OSCC patients and 78 healthy controls were enrolled in this case-control study. The serum levels of melatonin were determined by enzyme-linked immunosorbent assay (ELISA) and compared between the two groups. RESULTS: The serum melatonin levels were significantly lower in OSCC patients compared with healthy controls (mean ± standard deviation, 15.0 ± 4.6 vs. 18.5 ± 11.8 pg/mL, p = 0.02). In the subgroup of age less than 55 years (mean age of OSCC), OSCC patients had a significantly decreased melatonin level than healthy controls (mean melatonin, 15.7 ± 12.6 vs. 20.8 ± 3.9 pg/mL, p = 0.02). Decreased serum melatonin (odds ratio (OR): 0.95, 95%CI: 0.91-0.99), alcohol consumption (OR: 29.02, 95%CI: 11.68-72.16), betel quid chewing (OR:136.44, 95%CI: 39.17-475.27), and cigarette smoking (OR:29.48, 95%CI: 11.06-78.60) all increased the risk of OSCC under univariate analyses of logistic regression. Betel quid chewing (OR: 45.98, 95%CI: 10.34-204.49) and cigarette smoking (OR:6.94, 95%CI: 1.60-30.16) were the independent risk factors for OSCC in Taiwan. In addition, a negative correlation between age and melatonin level was observed in healthy controls (Pearson r = -0.24, p = 0.03). However, the negative correlation was lost in patients with OSCC. Melatonin concentration had no association with the severity of OSCC. CONCLUSION: Overall, our study provides evidence that serum melatonin levels decreased in OSCC patients in Taiwan and the decreased level is much significant in young populations and suggests that the decreased melatonin was associated with OSCC, especially in young populations. Further studies are warranted to investigate whether melatonin can be a useful non-invasive screening tool for OSCC.

15.
Clin Lab ; 67(9)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34542973

ABSTRACT

BACKGROUND: Myeloproliferative neoplasms (MPN) are hematopoietic disorders characterized by abnormal proliferation of the myeloid lineage. Three classic subtypes are polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These disorders are well known for their association with the JAK2 V617F mutation, in addition to mutations in MPL exon 10, and JAK2 exon 12. CALR mutations were detected in approximately 20% to 25% of patients with ET and PMF and not in patients with PV. Most CALR mutations were deletions and insertions in exon 9, which caused frameshift mutations. METHODS: This study included 60 Taiwanese patients with MPN. We identified CALR mutations in patients with MPN using the high-resolution melting (HRM) analysis. Additionally, the HRM analysis was compared with ipsogen CALR RGQ PCR. To confirm the results of HRM and ipsogen CALR RGQ PCR, sequencing analysis was also conducted all the samples. RESULTS: Up to 6.25% of CALR mutations were successfully detected in patients with MPN using HRM analysis. Eight out of 65 patients (12.3%) were positive for the presence of CALR mutation, including p.L367fs*46 and p.K385fs*47. The results proved 100% comparable to those obtained using ipsogen CALR RGQ PCR. CONCLUSIONS: The HRM analysis and ipsogen CALR RGQ PCR are feasible and reliable techniques for the detection of CALR mutation. Furthermore, HRM offers several benefits, for example, it is time-saving, inexpensive, and does not require many personnel.


Subject(s)
Myeloproliferative Disorders , Polycythemia Vera , Calreticulin/genetics , Humans , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Receptors, Thrombopoietin/genetics
16.
Oncol Lett ; 22(5): 774, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34589153

ABSTRACT

Esophageal cancer is one of the most common malignancies and leading cause of cancer-associated mortality worldwide. However, the molecular mechanisms underlying esophageal cancer progression and the development of clinical tools for effective diagnosis remain unclear. Resistin, which was originally identified as an adipose tissue-secretory factor, has been associated with obesity-related diseases, including certain types of cancer. Thus, the present study aimed to investigate the expression levels of resistin in tissue and serum specimens from patients with esophageal squamous cell carcinoma (ESCC) to determine the potential biological effects of resistin on ESCC cells. The results demonstrated that both tissue and serum resistin levels were significantly lower in patients with ESCC compared with healthy controls. In addition, resistin expression was positively associated with the body mass index of patients with ESCC. In vitro studies revealed that resistin inhibited the migratory ability of ESCC cells, while having no effect on ESCC cell proliferation. Taken together, these results suggest that resistin may have the potential to be developed into a clinical marker for ESCC. However, further studies are required to investigate resistin receptor expression and determine the potential involvement of resistin-associated biological pathways, which may provide insight for future development of targeted therapies for resistin-mediated ESCC.

17.
Cancers (Basel) ; 13(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34439211

ABSTRACT

Lung cancer is a malignancy with high mortality worldwide, and metastasis occurs at a high frequency even when cancer spread is not detectable at primary operation. Cancer stemness plays an important role in malignant cancer behavior, treatment resistance, and cancer metastasis. Therefore, understanding the molecular pathogenesis behind cancer-stemness-mediated metastasis and developing effective approaches to prevent metastasis are key issues for improving cancer treatment. In this study, we investigated the role of CD44 stemness marker in lung cancer using in vitro and clinical studies. Immunohistochemical staining of lung cancer tissue specimens revealed that primary tumors with higher CD44 expression showed increased metastasis to regional lymph nodes. Flow cytometry analysis suggested that CD44 positive cells were enriched in the metastatic lymph nodes compared to the primary tumors. CD44 overexpression significantly increased migration and invasion abilities of lung cancer cells through CD44-induced ERK phosphorylation, ZEB1 upregulation, and Claudin-1 downregulation. Furthermore, ERK inhibition suppressed the migration and invasion abilities of CD44-overexpressing lung cancer cells. In summary, our in vitro and clinical results indicate that CD44 may be a potential prognostic and therapeutic marker for lung cancer patients.

18.
Cancers (Basel) ; 13(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209963

ABSTRACT

Betel quid (BQ), a group I human carcinogen, strongly contributes to an increased risk of oral potentially malignant disorders (OPMD) and cancers of the oral cavity and pharynx. This study was conducted to discover whether monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT) variants play a potential role in the risk assessment of oral cavity and pharynx cancers and OPMD, particularly among BQ users. We applied a case-control study to confirm the polymorphism of MAO and COMT using single-nucleotide polymorphisms. We used qRT-PCR, Western blotting, and immunohistochemistry (IHC) to determine MAO and COMT expression. Carriers of the MAOA rs6323 G-allele, MAOB rs6324 G-allele, and COMT rs4633 C/C-genotype had a prominently increased risk of oral cavity and pharynx cancers (AOR = 56.99; p < 0.001). Compared to adjacent noncancerous tissues, a significant downregulation of MAO and COMT expression was exhibited in cancerous tissues (p < 0.01). Furthermore, in different cell models, MAO and COMT expression was significantly downregulated with an increased dose of arecoline (p < 0.01). In personalized preventive medicine for oral and pharyngeal cancers, our findings are the first to demonstrate the potential role of lower MAO and COMT expression levels, with the risk polymorphisms utilized as clinical biomarkers.

19.
Materials (Basel) ; 14(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34300737

ABSTRACT

The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.

20.
Cancer Lett ; 514: 1-11, 2021 08 28.
Article in English | MEDLINE | ID: mdl-34022282

ABSTRACT

MRE11, the core of the MRE11/RAD50/NBS1 complex, is one of key DNA damage response proteins. Increasing evidence suggests that its expression in cancer cells is critical to developing radioresistance; as such, MRE11 is an emerging marker for targeted radiosensitization strategies. Elevated MRE11 in tumor tissues has been associated with poor survival in patients undergoing radiotherapy, although in some cancer types, the opposite has been noted. The recent discovery of ionizing radiation-induced truncation of MRE11, which decreases its efficacy, may explain some of these paradoxical findings. The progress of research on the biological modulation of MRE11 expression is also discussed, with the potential application of small molecule or large molecule inhibitors of MRE11 for enhancing radiosensitivity. Current research has further highlighted both nuclease and non-nuclease activities of MRE11 in cancer cells treated with ionizing radiation, and differentiation between these is essential to verify the targeting effects of radiosensitizing agents. These updates clarify our understanding of how MRE11 expression may be utilized in future stratification of cancer patients for radiotherapy, and how it may be leveraged in shaping novel radiosensitization strategies.


Subject(s)
MRE11 Homologue Protein/genetics , Neoplasms/metabolism , Neoplasms/radiotherapy , Humans , Radiation Tolerance/genetics , Radiation-Sensitizing Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...