Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36905055

ABSTRACT

Grapevine virus-associated disease such as grapevine leafroll disease (GLD) affects grapevine health worldwide. Current diagnostic methods are either highly costly (laboratory-based diagnostics) or can be unreliable (visual assessments). Hyperspectral sensing technology is capable of measuring leaf reflectance spectra that can be used for the non-destructive and rapid detection of plant diseases. The present study used proximal hyperspectral sensing to detect virus infection in Pinot Noir (red-berried winegrape cultivar) and Chardonnay (white-berried winegrape cultivar) grapevines. Spectral data were collected throughout the grape growing season at six timepoints per cultivar. Partial least squares-discriminant analysis (PLS-DA) was used to build a predictive model of the presence or absence of GLD. The temporal change of canopy spectral reflectance showed that the harvest timepoint had the best prediction result. Prediction accuracies of 96% and 76% were achieved for Pinot Noir and Chardonnay, respectively. Our results provide valuable information on the optimal time for GLD detection. This hyperspectral method can also be deployed on mobile platforms including ground-based vehicles and unmanned aerial vehicles (UAV) for large-scale disease surveillance in vineyards.


Subject(s)
Closteroviridae , Virus Diseases , Vitis , Plant Diseases , Plant Leaves
2.
Viruses ; 12(8)2020 07 28.
Article in English | MEDLINE | ID: mdl-32731601

ABSTRACT

Grapevine viruses are found throughout the viticultural world and have detrimental effects on vine productivity and grape and wine quality. This report provides a comprehensive and up-to-date review on grapevine viruses in Australia with a focus on "Shiraz Disease" (SD) and its two major associated viruses, grapevine virus A (GVA) and grapevine leafroll-associated virus 3 (GLRaV-3). Sensitive grapevine cultivars like Shiraz infected with GVA alone or with a co-infection of a leafroll virus, primarily GLRaV-3, show symptoms of SD leading to significant yield and quality reductions in Australia and in South Africa. Symptom descriptors for SD will be outlined and a phylogenetic tree will be presented indicating the SD-associated isolates of GVA in both countries belong to the same clade. Virus transmission, which occurs through infected propagation material, grafting, and naturally vectored by mealybugs and scale insects, will be discussed. Laboratory and field-based indexing will also be discussed along with management strategies including rogueing and replanting certified stock that decrease the incidence and spread of SD. Finally, we present several cases of SD incidence in South Australian vineyards and their effects on vine productivity. We conclude by offering strategies for virus detection and management that can be adopted by viticulturists. Novel technologies such as high throughput sequencing and remote sensing for virus detection will be outlined.


Subject(s)
Closteroviridae/genetics , Flexiviridae/genetics , Phylogeny , Plant Diseases/virology , Animals , Australia , Closteroviridae/classification , Closteroviridae/pathogenicity , Cytopathogenic Effect, Viral , Flexiviridae/classification , Flexiviridae/pathogenicity , Insecta/virology , South Africa , Virus Diseases/transmission , Vitis/virology , Wine
SELECTION OF CITATIONS
SEARCH DETAIL
...