Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Fitoterapia ; 176: 106015, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762075

ABSTRACT

Five dihydrophenanthropyrans (1-5) were isolated from the pseudobulbs of Pholidota chinensis, among which 1,3-di(4'-hydroxybenzy)-imbricatin (3) was isolated from the nature for the first time. Their structures were elucidated and established through various spectroscopic methods. These compounds exhibited a potent inhibition effect on both N-formyl-methionyl-leucyl-phenylalanine (fMLF)-induced superoxide anion generation and elastase release with IC50 values ranging from 0.23 to 7.63 µM. Furthermore, dihydrophenanthropyrans (1-3) also demonstrated a dose-dependent reactive oxygen species (ROS) scavenging effect. In addition, dihydrophenanthropyrans (2-3) exhibited a dose-dependent reduction in the intracellular Ca2+ concentration ([Ca2+]i) in fMLF-activated human neutrophils. Moreover, dihydrophenanthropyrans (1-3) selectively inhibited the phosphorylation of c-Jun N-terminal kinases (JNKs) and p38, while only dihydrophenanthropyran (1) inhibited the phosphorylation of extracellular signal-regulated kinases (ERKs) in fMLF-activated human neutrophils. Notably, dihydrophenanthropyrans (1-3) did not affect protein kinase B (AKT) activity in these cells. These findings highlight the potent anti-inflammatory capabilities of dihydrophenanthropyrans, manifested through their ability to inhibit superoxide anion generation, suppress elastase release, and selectively modulate key signaling pathways in human neutrophils. This suggests that dihydrophenanthropyrans hold significant promise as therapeutic agents for conditions associated with neutrophil-mediated inflammation.


Subject(s)
Calcium , Neutrophils , Superoxides , Neutrophils/drug effects , Humans , Molecular Structure , Calcium/metabolism , Superoxides/metabolism , Pancreatic Elastase/metabolism , Reactive Oxygen Species/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Orchidaceae/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Inflammation/drug therapy , Mitogen-Activated Protein Kinases/metabolism , China , JNK Mitogen-Activated Protein Kinases/metabolism
2.
J Adv Res ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38548264

ABSTRACT

INTRODUCTION: Overwhelming neutrophil activation and oxidative stress significantly contribute to acute respiratory distress syndrome (ARDS) pathogenesis. However, the potential of repurposing ribociclib, a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor used clinically in cancer treatment, for treating neutrophilic ARDS remains uncertain. This study illustrated the ability and underlying mechanism of ribociclib for treating ARDS and neutrophilic inflammation. METHODS: Primary human neutrophils were used to determine the therapeutic effects of ribociclib on respiratory bursts, chemotactic responses, and inflammatory signaling. In vitro and silico analyses were performed to determine the underlying molecular mechanisms. The potential of ribociclib repurposing was evaluated using an in vivo ARDS model in lipopolysaccharide (LPS)-primed mice. RESULTS: We found that treatment using ribociclib markedly limited overabundant oxidative stress (reactive oxygen species [ROS]) production and chemotactic responses (integrin levels and adhesion) in activated human neutrophils. Ribociclib was also shown to act as a selective inhibitor of phosphodiesterase 4 (PDE4), thereby promoting the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, leading to the inhibition of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) phosphorylation, and calcium influx. Notably, prophylactic administration and post-treatment with ribociclib ameliorated neutrophil infiltration, lung inflammation, accumulation of oxidative stress, pulmonary destruction, and mortality in mice with LPS-induced ARDS. CONCLUSION: We demonstrated for the first time that ribociclib serves as a novel PDE4 inhibitor for treating neutrophilic inflammation and ARDS. The repurposing ribociclib and targeting neutrophilic PDE4 offer a potential off-label alternative for treating lung lesions and other inflammatory conditions.

3.
Mol Cell ; 83(22): 4123-4140.e12, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37848033

ABSTRACT

Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.


Subject(s)
Ligases , Melanoma , Humans , HeLa Cells , Ubiquitination , Ubiquitins
4.
ACS Appl Mater Interfaces ; 15(19): 23593-23601, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37157130

ABSTRACT

Understanding the physicochemical modulation of functional molecules is the primary step in exploring novel stimuli-responsive materials, and preventing the π-π stacking configuration of π-conjugated molecules has been an effective strategy of vapochromic material development, such as of nanoporous frameworks. Nevertheless, the more complicated synthetic strategy should in fact be applied in many circumstances. In this study, we explore a facile supramolecular strategy where the commodity plastic, syndiotactic-poly(methyl methacrylate) (st-PMMA), is utilized to wrap C60 to form the inclusion complex. The structural characterization revealed that C60s in the st-PMMA supramolecular helix had a lower coordination number (CN = 2) compared to the face-centered-cubic packing of pure C60s (CN = 12). Since the st-PMMA/C60 helical complex has structural flexibility, the π-π stacking structure of C60 was further interrupted by the intercalation of toluene vapors, and the complete isolation of C60 in the complex induced the desired vapochromic behavior. Furthermore, the aromatic interaction between C60 and aromatic solvent vapors enabled the st-PMMA/C60 inclusion complex to selectively encapsulate chlorobenzene, toluene, etc., and induce the color change. The st-PMMA/C60 inclusion complex exhibited a transparent film of sufficient structural integrity such that it can still induce a reversible color change after several cycles. As a result, a new strategy has been discovered for the development of novel vapochromic materials via host-guest chemistry.

5.
Br J Pharmacol ; 180(16): 2120-2139, 2023 08.
Article in English | MEDLINE | ID: mdl-36929355

ABSTRACT

BACKGROUND AND PURPOSE: Acute respiratory distress syndrome (ARDS) is a catastrophic pulmonary inflammatory dysfunction with a high mortality rate. An overwhelming immune response by neutrophils is a key feature in infective or sterile ARDS. The formyl peptide receptor 1 (FPR1) is a crucial damage-sensing receptor for inflammatory reactions in the initiation and progression of neutrophil-mediated ARDS. However, effective targets for controlling dysregulated neutrophilic inflammatory injuries in ARDS are limited. EXPERIMENTAL APPROACH: Human neutrophils were used to explore the anti-inflammatory effects of cyclic lipopeptide anteiso-C13-surfactin (IA-1) from marine Bacillus amyloliquefaciens. The lipopolysaccharide-induced model of ARDS in mice was used to determine the therapeutic potential of IA-1 in ARDS. Lung tissues were harvested for histology analyses. KEY RESULTS: The lipopeptide IA-1 inhibited immune responses of neutrophils, including respiratory burst, degranulation, and expression of adhesion molecules. IA-1 inhibited the binding of N-formyl peptides to FPR1 in human neutrophils and in hFPR1-transfected HEK293 cells. We identified IA-1 as a competitive FPR1 antagonist, thus diminishing the downstream signalling pathways involving calcium, mitogen-activated protein kinases and Akt. Furthermore, IA-1 ameliorated the inflammatory damage to lung tissue, by decreasing neutrophil infiltration, reducing elastase release and oxidative stress in endotoxemic mice. CONCLUSION AND IMPLICATIONS: The lipopeptide IA-1 could serve as a therapeutic option for ARDS by inhibiting FPR1-mediated neutrophilic injury.


Subject(s)
Neutrophils , Respiratory Distress Syndrome , Humans , Animals , Mice , Receptors, Formyl Peptide/metabolism , HEK293 Cells , Respiratory Distress Syndrome/drug therapy , Lipopeptides/pharmacology
6.
Br J Pharmacol ; 180(16): 2172-2188, 2023 08.
Article in English | MEDLINE | ID: mdl-36967633

ABSTRACT

BACKGROUND AND PURPOSE: Neutrophilic inflammation is a critical pathogenic factor in psoriasis. The therapeutic applicability of palbociclib, a cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor clinically used to treat cancer, in the treatment of neutrophil-associated psoriasis remains undefined. In this study, we evaluated the therapeutic potential and pharmacological effect of palbociclib on neutrophil-associated psoriasiform dermatitis. EXPERIMENTAL APPROACH: The anti-inflammatory effects of palbociclib were determined in activated human neutrophils. The therapeutic feasibility of palbociclib in psoriasis was demonstrated in a mouse model of imiquimod-induced psoriasiform dermatitis. The in vitro enzymatic assays and in silico analyses were used to identify the underlying pharmacological mechanisms. KEY RESULTS: This study found that palbociclib inhibited neutrophilic inflammation, including superoxide anion generation, reactive oxygen species (ROS) formation, elastase degranulation and chemotactic responses. The mechanistic studies identified that the anti-inflammatory effects of palbociclib involved the targeting of phosphatidylinositol 3-kinase (PI3K) but not CDK4/6 in human neutrophils. Palbociclib preferentially targeted the p110δ catalytic subunit of PI3K and thereby blocked signalling via the PI3K/protein kinase B (Akt) pathway. Furthermore, topical application of palbociclib significantly ameliorated imiquimod-induced psoriasiform dermatitis in mice, including psoriatic symptoms, neutrophil infiltration, Akt activation and cytokine up-regulation. CONCLUSIONS AND IMPLICATIONS: This is the first study to demonstrate that palbociclib can potentially be used to treat neutrophil-associated psoriasiform dermatitis through the targeting of neutrophilic PI3K activity. Our findings prompt further research to explore the potential of palbociclib and PI3K in psoriasis and other inflammatory diseases.


Subject(s)
Dermatitis , Psoriasis , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Imiquimod/adverse effects , Phosphatidylinositol 3-Kinases , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/adverse effects , Disease Models, Animal
7.
Medicina (Kaunas) ; 59(3)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36984553

ABSTRACT

Background and Objective: Our previous study demonstrated that consistent treatment of oral cilostazol was effective in reducing levels of painful peripheral neuropathy in streptozotocin-induced type I diabetic rats. As diabetic neuropathy is characterized by hyperglycemia-induced nerve damage in the periphery, this study aims to examine the neuropathology as well as the effects of cilostazol treatments on the integrity of peripheral small nerve fibers in type I diabetic rats. Materials and Methods: A total of ninety adult male Sprague-Dawley rats were divided into the following groups: (1) naïve (control) group; (2) diabetic rats (DM) group for 8 weeks; DM rats receiving either (3) 10 mg/kg oral cilostazol (Cilo10), (4) 30 mg/kg oral cilostazol (Cilo30), or (5) 100 mg/kg oral cilostazol (Cilo100) for 6 weeks. Pain tolerance thresholds of hind paws toward thermal and mechanical stimuli were assessed. Expressions of PGP9.5, P2X3, CGRP, and TRPV-1 targeting afferent nerve fibers in hind paw skin and glial cells in the spinal dorsal horn were examined via immunohistochemistry and immunofluorescence. Results: Oral cilostazol ameliorated the symptoms of mechanical allodynia but not thermal analgesia in DM rats. Significant reductions in PGP9.5-, P2X3-, CGRP, and TRPV-1-labeled penetrating nerve fibers in the epidermal layer indicated denervation of sensory nerves in the hind paw epidermis of DM rats. Denervation significantly improved in groups that received Cilo30 and Cilo100 in a dose-dependent manner. Cilostazol administration also suppressed microglial hyperactivation and increased astrocyte expressions in spinal dorsal horns. Conclusions: Oral cilostazol ameliorated hyperglycemia-induced peripheral small nerve fiber damage in the periphery of diabetic rats and effectively mitigated diabetic neuropathic pain via a central sensitization mechanism. Our findings present cilostazol not only as an effective option for managing symptoms of neuropathy but also for deterring the development of diabetic neuropathy in the early phase of type I diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetic Neuropathies , Hyperglycemia , Rats , Male , Animals , Cilostazol/therapeutic use , Cilostazol/pharmacology , Diabetic Neuropathies/drug therapy , Rats, Sprague-Dawley , Streptozocin/adverse effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/chemically induced , Calcitonin Gene-Related Peptide/adverse effects , Calcitonin Gene-Related Peptide/analysis , Sciatic Nerve/pathology , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hyperalgesia/metabolism , Denervation
8.
Phytochemistry ; 206: 113528, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36460139

ABSTRACT

Six previously undescribed components, bis(4-glycosyloxybenzyl) 2-isobutyltartrate derivatives (pholidotoside A-E) and phenolic glycoside (pholidotosin A), together with twenty known compounds were isolated from the pseudobulbs of Pholidota chinensis. Their structures and absolute configuration were elucidated and established through various spectroscopic and chemical methods. The anti-inflammatory potential of selected compounds was examined using a human neutrophil cell model activated by N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB). Among these, dihydrophenanthrenes exhibited potent inhibitory effect on both superoxide anion generation and elastase release assays with IC50 values ranging from 0.41 ± 0.05 to 7.14 ± 0.30 µM.


Subject(s)
Orchidaceae , Pangolins , Humans , Animals , Superoxides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Phenols/pharmacology , Neutrophils
9.
Front Pharmacol ; 13: 859982, 2022.
Article in English | MEDLINE | ID: mdl-35694244

ABSTRACT

Background: Peripheral nerve block (PNB) under echo guidance may not prevent intrafascicular anesthetic injection-induced nerve injury. This study investigated whether unintended needle piercing alone, or the intrafascicular nerve injectant could induce neuropathy. Methods: 120 adult male Sprague-Dawley rats were divided into four groups: 1) group S, only the left sciatic nerve was exposed; 2) group InF-P, the left sciatic nerve was exposed and pierced with a 30 G needle; 3) group InF-S, left sciatic nerve was exposed and injected with saline (0.9% NaCl 30 µL); 4) group InF-R, left sciatic nerve was exposed and injected with 0.5% (5 mg/mL, 30 µL) ropivacaine. Behaviors of thermal and mechanical stimuli responses from hindpaws, sciatic nerve vascular permeability and tight junction protein expression, and macrophage infiltration were assessed. Pro-inflammatory cytokine expression and TIMP-1 and MMP-9 activation at the injection site and the swollen, and distal sites of the sciatic nerve were measured by cytokine array, western blotting, and immunofluorescence of POh14 and POD3. Results: Intrafascicular saline and ropivacaine into the sciatic nerve, but not needle piercing alone, significantly induced mechanical allodynia that lasted for seven days. In addition, the prior groups increased vascular permeability and macrophage infiltration, especially in the swollen site of the sciatic nerve. Thermal hypersensitivity was induced and lasted for only 3 days after intrafascicular saline injection. Obvious upregulation of TIMP-1 and MMP-9 on POh6 and POh14 occurred regardless of intrafascicular injection or needle piercing. Compared to the needle piercing group, the ratio of MMP-9/TIMP-1 was significantly higher in the intrafascicular injectant groups at the injected and swollen sites of the sciatic nerve. Although no gross changes in the expressions of tight junction proteins (TJPs) claudin-5 and ZO-1, the TJPs turned to apparent fragmentation and fenestration-like degenerative change in swollen endothelial cells and thickened microvessels. Conclusion: Intrafascicular nerve injection is a distinct mechanism that induces neuropathy. It is likely that the InF nerve injection-induced neuropathy was largely due to dramatic, but transient, increases in enzymatic activities of MMP-9 and activating TIMP-1 in the operated nerves. The changes in enzymatic activities then contributed to certain levels of extracellular matrix degradation, which leads to increases in endoneurial vascular permeability.

10.
Antioxidants (Basel) ; 11(1)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35052627

ABSTRACT

The pathogenesis of acute respiratory distress syndrome (ARDS) is very complex. Patients with ARDS still suffer high mortality rates. Infiltration and activation of neutrophils in lungs are critical pathogenic factors in ARDS. In this study, we demonstrate that meso-dihydroguaiaretic acid (MDGA), a natural lignan, inhibits inflammatory responses in human neutrophils and ameliorates ARDS in mice. MDGA inhibited superoxide anion generation and elastase release in various G-protein coupled receptor agonists-induced human neutrophils. However, MDGA did not alter superoxide anion generation and elastase activity in cell-free systems. These results suggest that the anti-inflammatory effects of MDGA are mediated by regulating cellular signals in human neutrophils. In consistent with this, MDGA suppressed phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase in activated human neutrophils. Moreover, MDGA inhibited CD11b expression and adhesion in activated human neutrophils. Interestingly, MDGA reduced reactive oxygen species (ROS) generation but not superoxide anion generation in protein kinase C (PKC) activator-induced human neutrophils, suggesting that MDGA may also have ROS scavenging ability. Indeed, MDGA showed strong free radical scavenging activity in cell-free assays. Significantly, MDGA suppressed PKC-induced neutrophil extracellular trap formation. Additionally, treatment of MDGA attenuated neutrophil infiltration and lung damage on lipopolysaccharide-induced ARDS in mice. In conclusion, our results demonstrate that MDGA has anti-neutrophilic inflammatory effects and free-radical scavenging activity. We also suggest that MDGA has potential to serve as a lead for developing new therapeutics to treat ARDS.

11.
J Agric Food Chem ; 69(40): 11856-11866, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34590863

ABSTRACT

Four active partition layers and ten isolates, including (5R)- and (5S)-macapyrrolidone A (1a, 1b), and four new alkaloids, (5R)- and (5S)-macapyrrolidone B (2a, 2b) and macapyrrolins D, E (3, 4), were isolated from maca (Lepidium meyenii Walp.), an indigenous food plant from Peru. Derived from the n-hexane layer, the macamide-rich fraction exhibited pro-angiogenic activity on EPC and HUVEC cells. Anti-thrombotic activity was displayed by the polar part of maca extracts (n-butanol and water layers). Both 75% methanol aq. (midlower polar part) and n-hexane (low polar part) layers, which showed signs of fatty acid content, markedly inhibited superoxide and elastase release in an anti-inflammatory assay. The 75% methanol aq. layer showed strong anti-allergic activity, and macapyrrolin A (5) was found active based on ß-hexosaminidase release inhibition assays and a ChemGPS-NP experiment. These valuable bioactivity results suggest that maca is a food plant with good benefits for human health.


Subject(s)
Alkaloids , Anti-Allergic Agents , Lepidium , Anti-Inflammatory Agents/pharmacology , Humans , Plant Extracts/pharmacology
12.
Molecules ; 26(11)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199488

ABSTRACT

In December 2020, the U.K. authorities reported to the World Health Organization (WHO) that a new COVID-19 variant, considered to be a variant under investigation from December 2020 (VUI-202012/01), was identified through viral genomic sequencing. Although several other mutants were previously reported, VUI-202012/01 proved to be about 70% more transmissible. Hence, the usefulness and effectiveness of the newly U.S. Food and Drug Administration (FDA)-approved COVID-19 vaccines against these new variants are doubtfully questioned. As a result of these unexpected mutants from COVID-19 and due to lack of time, much research interest is directed toward assessing secondary metabolites as potential candidates for developing lead pharmaceuticals. In this study, a marine-derived fungus Aspergillus terreus was investigated, affording two butenolide derivatives, butyrolactones I (1) and III (2), a meroterpenoid, terretonin (3), and 4-hydroxy-3-(3-methylbut-2-enyl)benzaldehyde (4). Chemical structures were unambiguously determined based on mass spectrometry and extensive 1D/2D NMR analyses experiments. Compounds (1-4) were assessed for their in vitro anti-inflammatory, antiallergic, and in silico COVID-19 main protease (Mpro) and elastase inhibitory activities. Among the tested compounds, only 1 revealed significant activities comparable to or even more potent than respective standard drugs, which makes butyrolactone I (1) a potential lead entity for developing a new remedy to treat and/or control the currently devastating and deadly effects of COVID-19 pandemic and elastase-related inflammatory complications.


Subject(s)
4-Butyrolactone/analogs & derivatives , Anti-Allergic Agents/chemistry , Anti-Inflammatory Agents/chemistry , Aspergillus/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , 4-Butyrolactone/chemistry , 4-Butyrolactone/isolation & purification , 4-Butyrolactone/metabolism , Anti-Allergic Agents/metabolism , Anti-Inflammatory Agents/metabolism , Aspergillus/growth & development , Aspergillus/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Humans , Leukocyte Elastase/antagonists & inhibitors , Leukocyte Elastase/metabolism , Magnetic Resonance Spectroscopy , Molecular Conformation , Molecular Docking Simulation , Neutrophils/enzymology , SARS-CoV-2/isolation & purification , Seawater/microbiology , Viral Matrix Proteins/metabolism
13.
Br J Pharmacol ; 178(20): 4069-4084, 2021 10.
Article in English | MEDLINE | ID: mdl-34131920

ABSTRACT

BACKGROUND AND PURPOSE: Neutrophil overactivation is crucial in the pathogenesis of acute lung injury (ALI). Bletinib (3,3'-dihydroxy-2',6'-bis(p-hydroxybenzyl)-5-methoxybibenzyl), a natural bibenzyl, extracted from the Bletilla plant, exhibits anti-inflammatory, antibacterial, and antimitotic effects. In this study, we evaluated the therapeutic effects of bletinib in human neutrophilic inflammation and LPS-mediated ALI in mice. EXPERIMENTAL APPROACH: In human neutrophils activated with the formyl peptide (fMLP), we assessed integrin expression, superoxide anion production, degranulation, neutrophil extracellular trap (NET) formation, and adhesion through flow cytometry, spectrophotometry, and immunofluorescence microscopy. Immunoblotting was used to measure phosphorylation of Src family kinases (SFKs) and downstream proteins. Finally, a LPS-induced ALI model in male BALB/c mice was used to investigate the potential therapeutic effects of bletinib treatment. KEY RESULTS: In activated human neutrophils, bletinib reduced degranulation, respiratory burst, NET formation, adhesion, migration, and integrin expression; suppressed the enzymic activity of SFKs, including Src, Lyn, Fgr, and Hck; and inhibited the phosphorylation of SFKs as well as Vav and Bruton's tyrosine kinase (Btk). In mice with ALI, the pulmonary sections demonstrated considerable amelioration of prominent inflammatory changes, such as haemorrhage, pulmonary oedema, and neutrophil infiltration, after bletinib treatment. CONCLUSION AND IMPLICATIONS: Bletinib regulates neutrophilic inflammation by inhibiting the SFK-Btk-Vav pathway. Bletinib ameliorates LPS-induced ALI in mice. Further biochemical optimisation of bletinib may be a promising strategy for the development of novel therapeutic agents for inflammatory diseases.


Subject(s)
Acute Lung Injury , src-Family Kinases , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Inflammation , Male , Mice , Mice, Inbred BALB C , Phosphorylation , src-Family Kinases/metabolism
14.
Bioorg Chem ; 111: 104846, 2021 06.
Article in English | MEDLINE | ID: mdl-33813149

ABSTRACT

A series of ß-carboline derivatives was synthesized by the Pictet-Spengler reaction with or without the combretastatin skeleton. The structures of these derivatives were elucidated by spectroscopic techniques. All synthesized compounds were evaluated for their anti-inflammatory activity in human neutrophils. Among them, two compounds, NTU-228 and HK-72, showed significant inhibitory effects on N-formyl-Met-Leu-Phe (fMLF)-induced superoxide anion generation in human neutrophils with IC50 values of 5.58 ± 0.56 and 2.81 ± 0.07 µM, respectively. Neither NTU-228 nor HK-72 caused cytotoxicity in human neutrophils. NTU-228 inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and intracellular Ca2+ levels ([Ca2+]i) in fMLF-activated human neutrophils. Additionally, HK-72 selectively inhibited the fMLF-induced phosphorylation of p38 and [Ca2+]i in human neutrophils. Molecular docking analysis showed a favorable binding affinity of HK-72 toward p38 MAPK. The proposed synthetic strategy opens up new opportunities for the synthesis of novel potential candidates against neutrophilic inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Bibenzyls/pharmacology , Carbolines/pharmacology , Drug Design , Inflammation/drug therapy , Neutrophils/drug effects , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Bibenzyls/chemistry , Carbolines/chemistry , Dose-Response Relationship, Drug , Humans , Inflammation/metabolism , Molecular Structure , Neutrophils/metabolism , Structure-Activity Relationship
15.
Mar Drugs ; 19(1)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467112

ABSTRACT

Chemical investigation of a Red Sea Spongia sp. led to the isolation of four new compounds, i.e., 17-dehydroxysponalactone (1), a carboxylic acid, spongiafuranic acid A (2), one hydroxamic acid, spongiafuranohydroxamic acid A (3), and a furanyl trinorsesterpenoid 16-epi-irciformonin G (4), along with three known metabolites (-)-sponalisolide B (5), 18-nor- 3,17-dihydroxy-spongia-3,13(16),14-trien-2-one (6), and cholesta-7-ene-3ß,5α-diol-6-one (7). The biosynthetic pathway for the molecular skeleton of 1 and related compounds was postulated for the first time. Anti-inflammatory activity of these metabolites to inhibit superoxide anion generation and elastase release in N-formyl-methionyl-leucyl phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophil cells and cytotoxicity of these compounds toward three cancer cell lines and one human dermal fibroblast cell line were assayed. Compound 1 was found to significantly reduce the superoxide anion generation and elastase release at a concentration of 10 µM, and compound 5 was also found to display strong inhibitory activity against superoxide anion generation at the same concentration. Due to the noncytotoxic activity and the potent inhibitory effect toward the superoxide anion generation and elastase release, 1 and 5 can be considered to be promising anti-inflammatory agents.


Subject(s)
Anti-Inflammatory Agents/metabolism , Diterpenes/metabolism , Porifera/metabolism , Terpenes/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Diterpenes/chemistry , Diterpenes/pharmacology , Humans , Indian Ocean , Neutrophils/drug effects , Neutrophils/metabolism , Porifera/chemistry , Terpenes/chemistry , Terpenes/pharmacology
16.
Front Pharmacol ; 12: 771271, 2021.
Article in English | MEDLINE | ID: mdl-35115925

ABSTRACT

Background: Cilostazol is an antiplatelet agent with vasodilating, endothelial function restoration, and anti-inflammatory effects. This study aims to investigate the efficacy of oral cilostazol for preventing the development of diabetic peripheral neuropathy (DPN). Materials and Methods: Ninety adult male Sprague-Dawley rats were divided into five groups: 1) naïve (control); 2) diabetic (DM); 3) DM receiving 10 mg/kg cilostazol (cilo-10); 4) DM receiving 30 mg/kg cilostazol (cilo-30); and 5) DM receiving 100 mg/kg cilostazol (cilo-100). Hindpaw responses to thermal and mechanical stimuli were measured. Activation of microglia and astrocytes in the spinal dorsal horn (SDH) and expression of NaVs in the dorsal root ganglia (DRG) were examined with Western blots and immunofluorescence. Results: DM rats displayed decreased withdrawal thresholds to mechanical stimuli (mechanical allodynia) and blunted responses to thermal stimuli. In addition, the expression of microglia increased, but astrocytes were reduced in the SDH. Upregulation of Nav -1.1, 1.2, -1.3, -1.6, and -1.7 and downregulation of Nav-1.8 were observed in the DRG. The DM rats receiving cilostazol all returned DM-induced decrease in withdrawal threshold to mechanical stimuli and attenuated neuropathic pain. Additionally, all cilostazol treatments suppressed the level of activated microglial cells and ameliorated the DM-induced decline in astrocyte expression levels in the SDH. However, only the rats treated with cilo-100 demonstrated significant improvements to the aberrant NaV expression in the DRG. Conclusion: Oral cilostazol can blunt the responses of mechanical allodynia and has the potential to treat diabetic neuropathy by attenuating NaV and glial cell dysregulation.

17.
J Ethnopharmacol ; 264: 113224, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32800928

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Lophatherum gracile Brongn. (L. gracile) has been long used in traditional herbal medicine to clinically clear heat, disinhibit dampness, and treat inflammation. However, the effect of L. gracile on the activation of human neutrophils remains unclear. AIM OF THE STUDY: The aim of current study is to investigate the anti-inflammatory properties of L. gracile extract (LGE) in N-formyl-methionyl-leucyl-phenylalanine (fMLF)-induced activation of human neutrophils. MATERIALS AND METHODS: Superoxide anion generation and elastase release were estimated by spectrophotometry. A series of signaling pathways including mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt), as well as calcium mobilization were studied by Western blot analysis and spectrofluorometry. RESULTS: Our experimental results indicated that the nontoxic dosage of LGE does-dependently inhibited the fMLF-induced superoxide anion (O2•-) generation, elastase release, CD11b expression, adhesion, and chemotactic migration in human neutrophils. LGE selectively inhibited the fMLF-induced phosphorylation of JNK but not p38, ERK, or Akt in human neutrophils. LGE also decreased the intracellular Ca2+ levels ([Ca2+]i) in fMLF-activated human neutrophils. However, a specific JNK inhibitor inhibited the fMLF-induced O2•- generation and CD11b expression, but it had no effect on [Ca2+]i in human neutrophils. CONCLUSIONS: LGE exhibited anti-inflammatory activities in fMLF-activated human neutrophils. The pharmacological mechanisms of LGE-repressed neutrophilic inflammation were through two independent pathways, JNK signaling and calcium mobilization. Our results suggested that LGE holds the potential to be developed as an anti-inflammatory botanical medicine.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Calcium Signaling/drug effects , Drugs, Chinese Herbal/pharmacology , MAP Kinase Signaling System/drug effects , Neutrophils/drug effects , Plants, Medicinal , Adult , Anti-Inflammatory Agents/isolation & purification , Calcium Signaling/physiology , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/isolation & purification , Female , Humans , MAP Kinase Signaling System/physiology , Male , Neutrophils/metabolism , Neutrophils/pathology , Young Adult
18.
Life (Basel) ; 10(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260891

ABSTRACT

BACKGROUND: Kan-Lu-Hsiao-Tu-Tan (KLHTT) exhibits anti-psoriatic effects through anti-inflammatory activity in mice. However, the therapeutic effects of KLHTT on rheumatoid arthritis (RA), another significant autoimmune inflammatory disorder, have not been elucidated. Herein, we explored the anti-arthritic effects of KLHTT on collagen-induced arthritis (CIA) in mice. METHODS: KLHTT was extracted by boiling water and subjected to spectroscopic analysis. Chicken collagen type II (CII) with complete Freund's adjuvant was intradermally injected to induce CIA in DBA/1J mice. Anti-CII antibody, cytokines, malondialdehyde (MDA), and hydrogen peroxide (H2O2) were measured using ELISA, thiobarbituric acid reactive substances, and a hydrogen peroxide assay kit. Splenocyte proliferation was tested using thymidine incorporation. Th1 and Th17 cells were analyzed by flow cytometry. RESULTS: Oral KLHTT treatment (50 and 100 mg/kg) ameliorated mouse CIA by decreasing the levels of interleukin (IL)-1ß, IL-6, IL-17A, and tumour necrosis factor-α in the paw homogenates and serum. KLHTT also suppressed anti-CII antibody formation, splenocyte proliferation, and splenic Th1 and Th17 cell numbers. Additionally, KLHTT showed antioxidant activity by reducing the concentrations of MDA and H2O2 in paw tissues. CONCLUSIONS: The therapeutic effects of KLHTT in CIA mice were through regulating oxidative stress and inflammatory responses. Our results suggest that KLHTT has potential to treat RA.

19.
ACS Appl Mater Interfaces ; 12(36): 40141-40152, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32845120

ABSTRACT

Understanding the molecular mechanisms of graphene oxide (GO)-based biomaterials is important for logical biomedical applications. Previous studies have revealed biointeractions between GO and immune effector cells, but the effects on neutrophils, crucial cells in the immune system, have not been thoroughly discussed. In this study, GO nanoformulations were synthesized with different functional groups, including GO, GO-carboxylated (GO-COOH), and PEGylated GO (GO-PEG), with different surface features, which were elucidated using imaging methods and surface-sensitive quantitative spectroscopic techniques, including atomic force microscopy (AFM), transmission electron microscopy (TEM), and X-ray photoemission spectroscopy (XPS). The GO-based nanoformulations elicited reactive oxygen species (ROS) generation and neutrophil extracellular trap (NET) formation in human neutrophils. Nanoformulated GO stimulates NET development via the formation of ROS. An endocytosis study revealed that nanoformulated GO facilitated internalization by neutrophils via macropinocytosis and actin-dependent phagocytosis. Importantly, calcium mobilization and phosphorylation proteins such as mitogen-activated protein kinases (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38) and AKT were involved in the activation of neutrophils. These findings offer the first verification that nanoformulated GO exhibits direct effects on human neutrophils.


Subject(s)
Biocompatible Materials/pharmacology , Graphite/pharmacology , Nanoparticles/chemistry , Neutrophils/drug effects , Adult , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , CD11b Antigen/biosynthesis , Graphite/chemical synthesis , Graphite/chemistry , Humans , Neutrophil Activation/drug effects , Neutrophil Activation/immunology , Neutrophils/immunology , Particle Size , Reactive Oxygen Species/immunology , Surface Properties , Young Adult
20.
Mol Neurobiol ; 57(9): 3931-3942, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32632603

ABSTRACT

The micro (mi)RNAs expressed in the sciatic nerve of streptozotocin (STZ)-induced diabetic rats were evaluated in terms of their therapeutic potential in patients with diabetic neuropathic pain (DNP). Relative miRNA expression in sciatic nerve with DNP was analyzed using next-generation sequencing and quantitative PCR. Potential downstream targets of miRNAs were predicted using Ingenuity Pathway Analysis and the TargetScan database. In vitro experiments were performed using miR-133a-3p-transfected RSC96 Schwann cells. We performed micro-Western and Western blotting and immunofluorescence analyses to verify the role of miR-133a-3p. In vivo, the association between miR-133a-3p with DNP was analyzed via AAV-miR-133a-3p intraneural (intra-epineural but extrafascicular) injection into the sciatic nerve of normal rats or injection of an miR-133a-3p antagomir into the sciatic nerve of diabetes mellitus (DM) rats. miR-133a-3p mimics transfected into RSC96 Schwann cells increased VEGFR-2, p38α MAPK, TRAF-6, and PIAS3 expression and reduced NFκB p50 and MKP3 expression. In normal rats, AAV-miR-133a-3p delivery via intraneural injection into the sciatic nerve induced mechanical allodynia and p-p38 MAPK activation. In DM rats, miR-133a-3p antagomir administration alleviated DNP and downregulated p-p38 phosphorylation. Overexpression of miR-133a-3p in the sciatic nerve induced such pain. We suggest that miR-133a-3p is a potential therapeutic target for DNP.


Subject(s)
MicroRNAs/genetics , Neuralgia/genetics , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Up-Regulation/genetics , Animals , Behavior, Animal , Dependovirus/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Gene Expression Profiling , Hyperalgesia/complications , Hyperalgesia/genetics , Male , MicroRNAs/metabolism , Neuralgia/complications , Phosphorylation , Physical Stimulation , Rats, Sprague-Dawley , Schwann Cells/metabolism , Streptozocin , Time Factors , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...