Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Virulence ; 15(1): 2350775, 2024 12.
Article in English | MEDLINE | ID: mdl-38736041

ABSTRACT

OBJECTIVES: The translocation of intestinal flora has been linked to the colonization of diverse and heavy lower respiratory flora in patients with septic ARDS, and is considered a critical prognostic factor for patients. METHODS: On the first and third days of ICU admission, BALF, throat swab, and anal swab were collected, resulting in a total of 288 samples. These samples were analyzed using 16S rRNA analysis and the traceability analysis of new generation technology. RESULTS: On the first day, among the top five microbiota species in abundance, four species were found to be identical in BALF and throat samples. Similarly, on the third day, three microbiota species were found to be identical in abundance in both BALF and throat samples. On the first day, 85.16% of microorganisms originated from the throat, 5.79% from the intestines, and 9.05% were unknown. On the third day, 83.52% of microorganisms came from the throat, 4.67% from the intestines, and 11.81% were unknown. Additionally, when regrouping the 46 patients, the results revealed a significant predominance of throat microorganisms in BALF on both the first and third day. Furthermore, as the disease progressed, the proportion of intestinal flora in BALF increased in patients with enterogenic ARDS. CONCLUSIONS: In patients with septic ARDS, the main source of lung microbiota is primarily from the throat. Furthermore, the dynamic trend of the microbiota on the first and third day is essentially consistent.It is important to note that the origin of the intestinal flora does not exclude the possibility of its origin from the throat.


Subject(s)
Bacteria , Bronchoalveolar Lavage Fluid , Microbiota , Pharynx , RNA, Ribosomal, 16S , Respiratory Distress Syndrome , Sepsis , Humans , Male , Female , Respiratory Distress Syndrome/microbiology , Middle Aged , Pharynx/microbiology , RNA, Ribosomal, 16S/genetics , Bronchoalveolar Lavage Fluid/microbiology , Aged , Sepsis/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Pulmonary Alveoli/microbiology , Adult , Intensive Care Units , Gastrointestinal Microbiome
2.
Huan Jing Ke Xue ; 45(5): 2767-2779, 2024 May 08.
Article in Chinese | MEDLINE | ID: mdl-38629540

ABSTRACT

The external spatiotemporal evolution and intrinsic impact mechanisms of ecosystem service value are of great significance for understanding regional ecosystem issues and enhancing human ecological well-being. Based on grid data, this study used the equivalent factor method and NDVI to measure the ecosystem service value of the Yellow River Basin, analyzed the spatial-temporal evolution of urban ecosystem service value along the basin, and established a GWR model to explore the spatial heterogeneity of each influencing factor on the basis of determining the main influencing factors via geographic detector. The results showed that:① The ecosystem service value of the Yellow River Basin increased first, then decreased, and finally increased from 2000 to 2020, showing a spatial distribution pattern of "the south was higher than the north;" "the lower reaches were lower, and the upper and middle reaches were higher;" and the regulation service contributed the most to the ecosystem service value of the basin. ② The results of geographical exploration showed that the degree of influence of various factors was different. Social factors played the strongest role in explaining the ecosystem service value of the Yellow River Basin, followed by economic factors, and natural factors played the weakest role. The high value areas in the upper reaches were mainly related to rivers and lakes, and the high value areas in the middle reaches were mainly related to mountains. ③ The results of the GWR model showed that population density and land reclamation rate were negatively correlated with ecosystem service value, whereas average annual precipitation was positively correlated, and the effects increased from east to west. The GDP per unit area was negatively correlated with the overall ecosystem service value but positively correlated in the upstream region.

3.
Clin Rheumatol ; 43(3): 993-1002, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253780

ABSTRACT

OBJECTIVES: We initially explored the link between the differentially expressed long non-coding RNAs (lncRNAs) and the number of regulatory T (Treg) cells by detecting the lncRNA expression profiles in patients with systemic lupus erythematosus (SLE), then analyzed the correlation between Treg-related lncRNAs and the clinical features of SLE patients, predicting the mechanism by which lncRNAs regulate the differentiation and development of Treg cells, and provided new ideas for the treatment of SLE. METHODS: Peripheral blood of 9 active SLE patients were collected and mononuclear cells (PBMCs) were extracted; the lncRNA expression profiles of PBMCs were analyzed by whole transcriptome sequencing. Nine healthy people were used as controls to screen the differentially expressed lncRNAs, to analyze the correlation between lncRNAs and Treg cell number. Pearson test was used to analyze the correlation between lncRNAs and the number of Treg cell, and the correlation between Treg-associated lncRNA and SLEDAI score, ESR, C3, and C4 in SLE patients. The targeted genes of Treg-associated lncRNAs were predicted with miRcode and Targetscan databases and coexpression network. RESULTS: There were 240 differentially expressed lncRNAs in SLE patients compared with healthy controls, including 134 highly expressed lncRNAs (p < 0.05) and 106 lowly expressed lncRNAs (p < 0.05). The expression of ANKRD44-AS1 (r = 0.7417, p = 0.0222), LINC00200 (r = 0.6960, p = 0.0373), AP001363.2 (r = 0.7766, p = 0.0138), and LINC02824 (r = 0.7893, p = 0.0114) were positively correlated with the number of Treg cell, and the expression of AP000640.1 (r = - 0.7225, p = 0.0279), AC124248.1 (r = - 0.7653, p = 0.0163), LINC00482 (r = - 0.8317, p = 0.0054), and MIR503HG (r = - 0.7617, p < 0.05) were negatively correlated with the number of Treg cell. Among these Treg-associated lncRNAs, the expression of LINC00482 (r = - 0.7348, p < 0.05) and MIR503 HG (r = - 0.7617, p < 0.05) were negatively correlated with C3. LINC00200, ANKRD44 - AS1, and AP000640.1 related to Treg cells regulate the expression of signal transducer and activator of transcription 5 (STAT5), phospholipase D1 (PLD1), homeodomain-only protein X (HOPX), and runt-related transcription factor 3 (RUNX3) through competitive binding of miRNA or trans-regulatory mechanism, thereby regulating the differentiation and development of Treg cell. CONCLUSIONS: The lncRNA expression profiles were changed in SLE patients, the differentially expressed lncRNAs were associated with abnormal number and function of Treg cells in SLE, and Treg-associated lncRNAs were associated with SLE-disease activity, which may affect the expression of STAT5, PLD1, HOPX, RUNX3 and regulate Treg cell function and participate in the pathogenesis and progression of SLE by competitively binding to miRNAs or trans-regulatory mechanism. Key points • Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and systems. lncRNAs may affect Treg cells function by regulating genes expression, which may be an important pathogenesis of SLE. • This study, taking SLE as an example, preliminarily analyzed the correlation between lncRNA and Treg cells in SLE patients, analyzed the correlation between Treg-related lncRNA and the clinical characteristics of SLE, and speculated that lncRNA could regulate the differentiation and development of Treg cells through competitive combination with miRNA or trans-regulatory mechanisms. • It is possible to target epigenetic therapy for SLE.


Subject(s)
Lupus Erythematosus, Systemic , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , T-Lymphocytes, Regulatory , STAT5 Transcription Factor/metabolism , MicroRNAs/genetics
4.
Pract Radiat Oncol ; 14(2): e87-e96, 2024.
Article in English | MEDLINE | ID: mdl-37871850

ABSTRACT

PURPOSE: Voluntary deep inspiration breath-hold (DIBH) is commonly used in radiation therapy (RT), but the short duration of a single breath-hold, estimated to be around 20 to 40 seconds, is a limitation. This prospective study aimed to assess the feasibility and safety of using a simple preoxygenation technique with a Venturi mask to prolong voluntary DIBH. METHODS AND MATERIALS: The study included 33 healthy volunteers and 21 RT patients. Preoxygenation was performed using a Venturi mask with a 50% oxygen concentration. Paired t tests compared the duration of a single DIBH in room air and after 5, 15, and 30 minutes of preoxygenation in healthy volunteers. Sustainability of breath-hold and tolerability of heart rate and blood pressure were assessed for multiple DIBH durations in both volunteers and patients. RESULTS: In healthy volunteers, a 15-minute preoxygenation significantly prolonged the duration of a single DIBH by 24.95 seconds compared with 5-minute preoxygenation (89 ± 27.76 vs 113.95 ± 30.63 seconds; P < .001); although there was a statistically significant increase in DIBH duration after 30-minute preoxygenation, it was only extended by 4.95 seconds compared with 15-minute preoxygenation (113.95 ± 30.63 vs 118.9 ± 29.77 seconds; P < .01). After 15-minute preoxygenation, a single DIBH lasted over 100 seconds in healthy volunteers and over 80 seconds in RT patients, with no significant differences among 6 consecutive cycles of DIBH. Furthermore, there were no significant differences in heart rate or blood pressure after DIBHs, including DIBH in room air and 6 consecutive DIBHs after 15-minute preoxygenation (all P > .05). CONCLUSIONS: Preoxygenation with a 50% oxygen concentration for 15 minutes effectively prolongs the duration of 6 cycles of DIBH both in healthy volunteers and RT patients. The utilization of a Venturi mask to deliver 50% oxygen concentration provides a solution characterized by its convenience, good tolerability, and effectiveness.


Subject(s)
Breath Holding , Masks , Humans , Prospective Studies , Volunteers , Oxygen , Radiotherapy Planning, Computer-Assisted , Heart , Organs at Risk
5.
Acta Pharmacol Sin ; 44(10): 1948-1961, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37225849

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative motor disorder characterized by a dramatic reduction in pars compacta of substantia nigra dopaminergic neurons and striatal dopamine (DA) levels. Mutations or deletions in the PARK7/DJ-1 gene are associated with an early-onset familial form of PD. DJ-1 protein prevents neurodegeneration via its regulation of oxidative stress and mitochondrial function as well as its roles in transcription and signal transduction. In this study, we investigated how loss of DJ-1 function affected DA degradation, ROS generation and mitochondrial dysfunction in neuronal cells. We showed that loss of DJ-1 significantly increased the expression of monoamine oxidase (MAO)-B but not MAO-A in both neuronal cells and primary astrocytes. In DJ-1-knockout (KO) mice, MAO-B protein levels in the substantia nigra (SN) and striatal regions were significantly increased. We demonstrated that the induction of MAO-B expression by DJ-1 deficiency depended on early growth response 1 (EGR1) in N2a cells. By coimmunoprecipitation omics analysis, we found that DJ-1 interacted with receptor of activated protein C kinase 1 (RACK1), a scaffolding protein, and thus inhibited the activity of the PKC/JNK/AP-1/EGR1 cascade. The PKC inhibitor sotrastaurin or the JNK inhibitor SP600125 completely inhibited DJ-1 deficiency-induced EGR1 and MAO-B expression in N2a cells. Moreover, the MAO-B inhibitor rasagiline inhibited mitochondrial ROS generation and rescued neuronal cell death caused by DJ-1 deficiency, especially in response to MPTP stimulation in vitro and in vivo. These results suggest that DJ-1 exerts neuroprotective effects by inhibiting the expression of MAO-B distributed at the mitochondrial outer membrane, which mediates DA degradation, ROS generation and mitochondrial dysfunction. This study reveals a mechanistic link between DJ-1 and MAO-B expression and contributes to understanding the crosslinks among pathogenic factors, mitochondrial dysfunction and oxidative stress in PD pathogenesis.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Monoamine Oxidase/genetics , Monoamine Oxidase/metabolism , Monoamine Oxidase/pharmacology , Up-Regulation , Reactive Oxygen Species/metabolism , Dopaminergic Neurons/metabolism , Signal Transduction , Neurodegenerative Diseases/metabolism , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Receptors for Activated C Kinase/pharmacology , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism
6.
Chin J Traumatol ; 25(3): 156-160, 2022 May.
Article in English | MEDLINE | ID: mdl-35042629

ABSTRACT

PURPOSE: Auditory nerve injury is one of the most common nerve injury complications of skull base fractures. However, there is currently a lack of auxiliary examination methods for its direct diagnosis. The purpose of this study was to find a more efficient and accurate means of diagnosis for auditory nerve injury. METHODS: Through retrospectively analyzing the results of brainstem auditory evoked potential (BAEP) and high-resolution CT (HRCT) in 37 patients with hearing impairment following trauma from January 1, 2018 to July 31, 2020, the role of the two inspection methods in the diagnosis of auditory nerve injury was studied. Inclusion criteria were patient had a clear history of trauma and unilateral hearing impairment after trauma; while exclusion criteria were: (1) severe patient with a Glasgow coma scale score ≤5 because these patients were classified as severe head injury and admitted to the intensive care unit, (2) patient in the subacute stage admitted 72 h after trauma, and (3) patient with prior hearing impairment before trauma. According to Goodman's classification of hearing impairment, the patients were divided into low/medium/severe injury groups. In addition, patients were divided into HRCT-positive and negative groups for further investigation with their BAEP results. The positive rates of BEAP for each group were observed, and the results were analyzed by Chi-square test (p < 0.05, regarded as statistical difference). RESULTS: A total of 37 patients were included, including 21 males and 16 females. All of them were hospitalized patients with GCS score of 6-15 at the time of admission. The BAEP positive rate in the medium and severe injury group was 100%, which was significantly higher than that in the low injury group (27.27%) (p < 0.01). The rate of BEAP positivity was significantly higher in the HRCT-positive group (20/30, 66.7%) than in the HRCT-negative group (1/7, 14.3%) (p < 0.05). Twenty patients (54.05%) were both positive for BEAP and HRCT test, and considered to have auditory nerve damage. Six patients (16.22%) were both negative for BEAP and HRCT test, and 10 patients (27.03%) were BAEP-negative but HRCT-positive: all the 16 patients were considered as non-neurological injury. The rest 1 case (2.70%) was BAEP-positive but HRCT-negative, which we speculate may have auditory nerve concussion. CONCLUSION: By way of BAEP combining with skull base HRCT, we may improve the accuracy of the diagnosis of auditory nerve injury. Such a diagnostic strategy may be beneficial to guiding treatment plans and evaluating prognosis.


Subject(s)
Evoked Potentials, Auditory, Brain Stem , Hearing Loss , Cochlear Nerve , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Humans , Male , Retrospective Studies , Skull Base/diagnostic imaging , Tomography, X-Ray Computed
7.
Front Pharmacol ; 12: 609059, 2021.
Article in English | MEDLINE | ID: mdl-33841142

ABSTRACT

Tetrastigma hemsleyanum Diels et Gilg is a valuable Chinese medicinal herb with a long history of clinical application. Our previous study isolated and characterized a purified polysaccharide from the aerial part of Tetrastigma hemsleyanum (SYQP) and found it having antipyretic and antitumor effects in mice. A preliminary mechanistic study suggests these effects may be related to the binding of toll-like receptor (TLR4). The objective of this study is to further explore the detailed stimulating characteristics of SYQP on TLR4 signaling pathway and its in vivo immune regulating effect. We use HEK-BLUE hTLR4, mouse and human macrophage cell lines, as research tools. In vitro results show SYQP activated HEK-BLUE hTLR4 instead of HEK-BLUE Null cells. The secretion and the mRNA expression of cytokines related to TLR4 signaling significantly increased after SYQP treatment in both PMA-induced THP-1 and RAW264.7 macrophage cell lines. The TLR4 antagonist TAK-242 can almost completely abolish this activation. Furthermore, molecules such as IRAK1, NF-κB, MAPKs, and IRF3 in both the MyD88 and TRIF branches were all activated without pathway selection. In vivo results show SYQP enhanced antigen-specific spleen lymphocyte proliferation and serum IgG levels in OVA-immunized C57BL/6 mice. Orally administered 200 mg/kg SYQP induced obvious tumor regression, spleen weight increase, and the upregulation of the mRNA expression of TLR4-related cytokines in Lewis lung carcinoma-bearing mice. These results indicate SYQP can act as both a human and mouse TLR4 agonist and enhance immune responses in mice (p < 0.05). This study provides a basis for the development and utilization of SYQP as a new type of TLR4 agonist in the future.

8.
Front Immunol ; 11: 577823, 2020.
Article in English | MEDLINE | ID: mdl-33178204

ABSTRACT

Monophosphoryl lipid A (MPL®) is the first non-alum vaccine adjuvant to achieve widespread clinical and market acceptance, a remarkable achievement given that it is manufactured from a Salmonella enterica endotoxin. To understand how MPL® successfully balanced the dual mandate of vaccine design-low reactogenicity with high efficacy-clinical- and research-grade MPL was evaluated in human and mouse cell systems. Stimulatory dose response curves revealed that most preparations of MPL are much more active in mouse than in human cell systems, and that the limited efficacy observed in human cells correlated with TLR4 inhibitory activity that resulted in a partial agonist profile. Further analysis of the major components of MPL® adjuvant prepared synthetically identified two structural variants that functioned as competitive antagonists of human TLR4. A partial agonist profile could be recapitulated and manipulated by spiking synthetic agonists with synthetic antagonists to achieve a broad dose range over which TLR4 stimulation could be constrained below a desired threshold. This report thus identifies mixed agonist-antagonist activity as an additional mechanism by which MPL® adjuvant is detoxified, relative to its parental LPS, to render it safe for use in prophylactic vaccines.


Subject(s)
Adjuvants, Immunologic/pharmacology , Lipid A/analogs & derivatives , Macrophages/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Drug Partial Agonism , Humans , Lipid A/pharmacology , Macrophages/metabolism , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , Species Specificity , THP-1 Cells , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
9.
Int J Biol Macromol ; 123: 157-166, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30439422

ABSTRACT

Polysaccharide from Phellinus igniarius (PPI) is known for its immune-regulating effect with low toxicity. Toll like receptor 4 (TLR4) is important in both innate and adaptive immune responses and considered to be a promising target for new immune adjuvants. In this study, PPI was investigated for its effect on activating TLR4 in RAW264.7 and peritoneal macrophages. The adjuvant potential of PPI was evaluated in OVA-immunized mice. The results showed PPI treatment significantly increased the secretion and the mRNA expression of both MyD88 dependent and TRIF dependent cytokines. IRAK-1, a key molecule on the downstream of MyD88, was polyubiquitinated while IRF-3, another key molecule on the downstream of TRIF, was phosphorylated obviously after the treatment of PPI. The phosphorylation of molecules involved in both NF-κB pathway and MAPK pathway were significantly up-regulated after PPI treatment. In addition, the effects of PPI on the macrophages almost completely disappeared after treating the cells with the TLR4 antagonist TAK-242. Further in vivo results showed PPI significantly increased the serum OVA-specific antibody and the OVA-specific spleen cell proliferation. Taken together, PPI can specifically stimulate TLR4 and activate both MyD88 and TRIF pathways. PPI has immune adjuvant activity and may become a new potential immune adjuvant.


Subject(s)
Adjuvants, Immunologic/pharmacology , Basidiomycota/metabolism , Macrophages/drug effects , Polysaccharides/pharmacology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cell Line , Cell Proliferation/drug effects , Female , Interferon Regulatory Factor-3/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Phosphorylation/drug effects , RAW 264.7 Cells , Sulfonamides/pharmacology , Up-Regulation/drug effects
10.
Environ Sci Technol ; 50(18): 10179-86, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27562531

ABSTRACT

Selenate (SeO4(2-)) bioreduction is possible with oxidation of a range of organic or inorganic electron donors, but it never has been reported with methane gas (CH4) as the electron donor. In this study, we achieved complete SeO4(2-) bioreduction in a membrane biofilm reactor (MBfR) using CH4 as the sole added electron donor. The introduction of nitrate (NO3(-)) slightly inhibited SeO4(2-) reduction, but the two oxyanions were simultaneously reduced, even when the supply rate of CH4 was limited. The main SeO4(2-)-reduction product was nanospherical Se(0), which was identified by scanning electron microscopy coupled to energy dispersive X-ray analysis (SEM-EDS). Community analysis provided evidence for two mechanisms for SeO4(2-) bioreduction in the CH4-based MBfR: a single methanotrophic genus, such as Methylomonas, performed CH4 oxidation directly coupled to SeO4(2-) reduction, and a methanotroph oxidized CH4 to form organic metabolites that were electron donors for a synergistic SeO4(2-)-reducing bacterium.


Subject(s)
Biofilms , Methane/metabolism , Bioreactors , Oxidation-Reduction , Selenic Acid
11.
Chem Biodivers ; 13(11): 1484-1492, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27449706

ABSTRACT

Stemucronatoside K (SMK) and its aglycone stephanthraniline A (STA) are the most representative of a series of novel C21 steriodal compounds that we have previously isolated from Asclepiadaceae plants. The objectives of this study were to investigate the antitumor activity of SMK and STA, and clarify the effect of the sugar chain at the C(3) position. Our results showed that both SMK and STA decreased the growth of HT-29 cells in a dose- and time-dependent manner. Meanwhile, STA showed much stronger inhibitory effect than SMK. Treatment of HT-29 cells with STA increased the apoptotic cell numbers and the protein expression of cleaved caspase 3 and cleaved-PARP. G1 phase cell cycle arrest and decreased expression of cyclin D1 and cyclin-dependent kinases 4 were also observed after STA treatment. Furthermore, STA reduced the mRNA levels of four Hedgehog pathway components (GLI1, GLI2, GLI3, and PTCH1) and suppressed Shh-induced Hedgehog pathway activation in a concentration-dependent manner. These results indicated that SMK and STA could inhibit the growth of HT-29 cells by inducing apoptosis, cell cycle arrest, and hedgehog pathway inhibition. The loss of sugar chain at C(3) position could enhance SMK's activity. This study is beneficial to understand the use of natural C21 steroids as antitumor lead compounds.


Subject(s)
Apoptosis/drug effects , Carbohydrates/chemistry , Cell Cycle Checkpoints/drug effects , Saponins/pharmacology , Signal Transduction/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , HT29 Cells , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Molecular Conformation , Saponins/chemistry , Structure-Activity Relationship
12.
Int Neurourol J ; 20(4): 288-295, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28043115

ABSTRACT

PURPOSE: Microvascular endothelial integrity is important for maintaining the blood-brain barrier (BBB). However, subarachnoid hemorrhage (SAH) disrupts this integrity, making the BBB dysfunctional-an important pathophysiological change after SAH. Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) regulate microvascular permeability by balancing each other's expression. METHODS: This study investigated the dynamics of Ang-1 and Ang-2 expression after SAH and the protective effect of Ang-1 on BBB functioning using an endovascular puncture model of rat SAH. The Ang-1 and Ang-2 expression in brain tissue was determined by immunohistochemistry. In addition, Western blotting was used to estimate Ang-1 and Ang-2 concentration and to compare them at 6-72 hours post-SAH cortex and hippocampus. Evans blue viability assay was used to evaluate BBB permeability, and neurological testing was implemented to evaluate neurological impairment during SAH. RESULTS: It was found that following SAH, Ang-1 expression decreases and Ang-2 expression increases in the cortex, hippocampus, and microvessels. The Ang-1/Ang-2 ratio decreased as quickly as 6 hours after SAH and reached its lowest 1 day after SAH. Finally, it was found that exogenous Ang-1 reduces SAH-associated BBB leakage and improves neurological function in post-SAH rats. CONCLUSIONS: Our findings suggest that the equilibrium between Ang-1 and Ang-2 is broken in a period shortly after SAH, and the treatment of exogenous Ang-1 injection alleviates neurological dysfunctions through decreasing BBB destruction.

13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 46(4): 615-8, 627, 2015 Jul.
Article in Chinese | MEDLINE | ID: mdl-26480670

ABSTRACT

OBJECTIVE: To establish a rapid and sensitive method based on polymerase chain reaction (PCR) combined with capillary electrophoresis-laser induced fluorescence (CE-LIF) and microchip capillary electrophoresis-laser induced fluorescence (MCE-LIF) for detecting adenoviruses in fecal samples. METHODS: The DNA of adenovirus in fecal samples were extracted by the commercial kits and the conserved region of hexon gene was selected as the target gene and amplified by PCR reaction. After labeling highly sensitive nucleic acid fluorescent dye SYBR Gold and SYBR Orange respectively, PCR amplification products were separated by CE and MCE under the optimized condition and detected by LIF detector. RESULTS: PCR amplification products could be detected within 9 min by CE-LIF and 6 min by MCE-LIF under the optimized separation condition. The sequenced PCR product showed good specificity in comparison with the prototype sequences from NCBI. The intraday and inter-day relative standard deviation (RSD) of the size (bp) of the target DNA was in the range of 1.14%-1.34% and 1.27%- 2.76%, respectively, for CE-LIF, and 1.18%-1.48% and 2.85%-4.06%, respectively, for MCE-LIF. The detection limits was 2.33 x 10(2) copies/mL for CE-LIF and 2.33 x 10(3) copies/mL for MCE-LIF. The two proposed methods were applied to detect fecal samples, both showing high accuracy. CONCLUSION: The two proposed methods of PCR-CE-LIF and PCR-MCE-LIF can detect adenovirus in fecal samples rapidly, sensitively and specifically.


Subject(s)
Adenoviridae/isolation & purification , Electrophoresis, Capillary , Feces/virology , Fluorescence , DNA, Viral/isolation & purification , Fluorescent Dyes , Humans , Polymerase Chain Reaction , Sensitivity and Specificity
14.
ACS Nano ; 9(11): 11414-21, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26431310

ABSTRACT

Magnetic nanocomposite fibers are a topic of intense research due to their potential breakthrough applications such as smart magnetic-field-response devices and electromagnetic interference (EMI) shielding. However, clustering of nanoparticles in a polymer matrix is a recognized challenge for obtaining a property-controllable nanocomposite fiber. Another challenge is that the strength and ductility of the nanocomposite fiber decrease significantly with increased weight loading of magnetic nanoparticles in the fiber. Here, we report high-strength single-walled carbon nanotube (SWNT)/permalloy nanoparticle (PNP)/poly(vinyl alcohol) multifunctional nanocomposite fibers fabricated by wet spinning. The weight loadings of SWNTs and PNPs in the fiber were as high as 12.0 and 38.0%, respectively. The tensile strength of the fiber was as high as 700 MPa, and electrical conductivity reached 96.7 S m(-1). The saturation magnetization (Ms) was as high as 24.8 emu g(-1). The EMI attenuation of a fabric woven from the prepared fiber approached 100% when tested with electromagnetic waves with a frequency higher than 6 GHz. The present study demonstrates that a magnetic-field-response device can be designed using the fabricated multifunctional nanocomposite fiber.

15.
Int J Mol Med ; 36(5): 1361-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26398676

ABSTRACT

Coronary artery disease (CAD) or atherosclerotic heart disease is one of the most common types of cardiovascular disease. Although percutaneous coronary intervention [PCI or percutaneous transluminal coronary angioplasty (PTCA)] is a mature, well-established technique used to treat atherosclerotic heart disease, its long­term therapeutic effects are compromised by a high incidence of vascular restenosis (RS) following angioplasty. In our previous study, we found that the principal gap junction protein, connexin 43 (Cx43), in vascular smooth muscle cells (VSMCs) was involved in the development of vascular RS following angioplasty-induced balloon injury. However, the exact role action of Cx43 in vascular RS remains unclear. In the present study, we aimed to further examine whether the knockdown of Cx43 attenuates the development of vascular RS through the inhibition of the proliferation and migration of VSMCs. We found that the use of a lentiviral vector expressing shRNA targeting Cx43 (Cx43­RNAi-LV) efficiently silenced the mRNA and protein expression of Cx43 in cultured VSMCs. In addition, MTT and Transwell assays were used to examined the proliferation and migration of the VSMCs, respectively. The results revealed that the knockdown of Cx43 by Cx43-RNAi-LV at a multiplicity of infection (MOI) of 100 significantly inhibited the proliferation and migration of the VSMCs in vitro. Notably, the knockdown of Cx43 also effectively attenuated the development of vascular RS and intimal hyperplasia following balloon injury in vivo. Taken together, our data suggest that Cx43 is involved in the development of vascular RS and intimal hyperplasia through the regulation of the proliferation and migration of VSMCs. Thus, the present study provides new insight into the pathogenesis of vascular RS, and suggests that further comfirms that Cx43 may well be a novel potential pharmacological target for preventing vascular RS following PCI.


Subject(s)
Angioplasty, Balloon, Coronary/adverse effects , Cell Movement/genetics , Cell Proliferation/genetics , Connexin 43/genetics , Animals , Cells, Cultured , Connexins/genetics , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Endothelium, Vascular/physiology , Hyperplasia/genetics , Hyperplasia/pathology , Male , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/physiology , RNA Interference/physiology , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley
16.
Zhong Yao Cai ; 37(2): 210-4, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-25095337

ABSTRACT

OBJECTIVE: To assay five lignans in Schisandrae Fructus collected from different habitats. METHODS: HPLC method was developed to assay Schizandrol A, Schizandrol B, Schisantherain A, deoxyschizandrin and gamma-schizandrin in Schisandrae Fructus. Hierarchical clustering analysis (HCA) and principal components analysis (PCA) were performed to evaluate and classify 30 batches of samples based on the contents of the five lignans using SOLO and SPSS 19.0 software. RESULTS: 30 batches of samples were divided into three groups, which reflecting their quality characteristics. CONCLUSION: PCA and HCA provide the basis for the classification and quality evaluation of Schisandrae Fructus. The content analysis provides reference for resources saving and rational using of Schisandrae Fructus.


Subject(s)
Fruit/chemistry , Lignans/analysis , Plants, Medicinal/chemistry , Schisandra/chemistry , Chromatography, High Pressure Liquid , Cluster Analysis , Ecosystem , Lignans/standards , Plants, Medicinal/growth & development , Principal Component Analysis , Quality Control , Schisandra/classification , Schisandra/growth & development
17.
Environ Toxicol Pharmacol ; 37(2): 718-28, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24607686

ABSTRACT

BACKGROUND AND AIMS: The nephrotoxic mechanisms of andrographolide sodium bisulfate (ASB) remain largely unknown. This study attempted to explore the mechanism of ASB-induced nephrotoxicity using human proximal tubular endothelial cells (HK-2). METHODS: For this study HK-2 cells were treated with rising concentrations of ASB. Their survival rate was detected using MTT assay and ultrastructure was observed with electron microscopy. L-Lactate dehydrogenase (LDH) assay was followed by examination of mitochondrial membrane potential (MMP). Reactive oxygen species (ROS) was detected using different methods and apoptosis/autophage related proteins were detected using immunoblotting. RESULTS: We found that ASB inhibited HK-2 cell proliferation and decreased cell survival rate in a time and dose-dependent manner (P<0.05, P<0.01, respectively). With increasing ASB concentration, cell structure was variably damaged and evidence of apoptosis and autophagy were observed. MMP gradually decreased and ROS was induced. The expression of JNK and Beclin-1 increased and activation of the JNK signaling pathway were seen. Apoptosis was induced via the mitochondrial-dependent caspase-3 and caspase-9 pathway, and autophagy related protein Beclin-1 was enhanced by ASB. CONCLUSION: The data show that ASB induces high levels of ROS generation in HK-2 cells and activates JNK signaling. Furthermore, ASB induces cell apoptosis via the caspase-dependent mitochondrial pathway, and induces cellular autophagy, in part by enhancing Beclin-1 protein expression.


Subject(s)
Diterpenes/toxicity , Endothelial Cells/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Sulfates/toxicity , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Autophagy/drug effects , Beclin-1 , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line , Cytochromes c/metabolism , Endothelial Cells/metabolism , Glutathione/metabolism , Humans , Kidney Tubules, Proximal/cytology , Membrane Potential, Mitochondrial/drug effects , Membrane Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Superoxide Dismutase/metabolism , bcl-2-Associated X Protein/metabolism
18.
J Zhejiang Univ Sci B ; 15(2): 173-80, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24510710

ABSTRACT

The conditions for extracting polysaccharides from tea (Camellia sinensis L.) fruit peel (TFPPs) were studied. Three parameters (temperature, time, and liquid/solid ratio) affecting the extraction of TFPP were optimized using response surface methodology (RSM). Under the optimized conditions, the yield of TFPP was predicted to be 4.98%. The physicochemical properties, in vitro antioxidant activities, and inhibitory effects on α-glucosidase of fractionated TFPPs (TFPP-0, TFPP-20, TFPP-40, and TFPP-60) were investigated. We found that the TFPPs were all acid protein-bound heteropolysaccharides, although with different chemical compositions. They had not only remarkable scavenging activity on 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and reducing activity, but also excellent inhibitory potential against α-glucosidase in vitro. Our results suggest that tea fruit peel could be treated as a potential bioresource for the development of polysaccharide antioxidants.


Subject(s)
Antioxidants/chemistry , Camellia sinensis/chemistry , Polysaccharides/chemistry , Tea/chemistry , alpha-Glucosidases/chemistry , Carbohydrates/chemistry , Chelating Agents/chemistry , Chromatography, High Pressure Liquid , Enzyme Inhibitors/chemistry , Ethanol/chemistry , Glycoside Hydrolase Inhibitors
20.
Nat Prod Res ; 27(22): 2105-10, 2013.
Article in English | MEDLINE | ID: mdl-23639075

ABSTRACT

Two new iridoid esters, named patriheterdoid B, C, have been isolated from the rhizomes and roots of Patrinia heterophylla Bunge. Their structures were elucidated by extensive spectroscopic technologies. Together with patriheterdoid B, C, two known analogues have been isolated and identified by means of mass spectrometry and (1)H and (13)C NMR spectrometry. These compounds showed cytotoxic activity against SGC-7901, PC3 cell lines.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Iridoids/isolation & purification , Patrinia/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Iridoids/chemistry , Molecular Structure , Rhizome/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...