Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 20(5): 3252-3257, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31635672

ABSTRACT

This study focused on an iron phthalocyanine compound with aligned CNTs on the surface of a carbon felt electrode (FePc/CNT/C) to enhance the bio-electro-Fenton microbial fuel cell system cathodes reaction rate of hydrogen peroxide and the electrical plate. Experiments of polarization curves and power density, decolorization of Reactive Black 5 (RB5), and scanning electron microscopy (SEM) measured the characteristics of the cathode plate. FePc/CNT/C presented better electrical properties (open-circuit voltage, maximum current density, and maximum power density) than that of CNT/C and C, as FePc is a catalyst and its planar structure could easily adhere to CNT to enhance the reduction reaction at the cathode and provide higher specific surface area. The optimal decolorization of RB5 dye, as achieved with the FePc/CNT/C electrode, was 61.79% among the three cathode electrodes in the bio-electro-Fenton microbial fuel cell system, and the maximum number of hydroxyl radicals was generated for the cathode electrode of FePc/CNT/C. These results suggest that the bio-electro-Fenton microbial fuel cell system could be applied as an energy-saving and efficient approach for dye-containing wastewater treatment.

2.
Materials (Basel) ; 12(10)2019 May 25.
Article in English | MEDLINE | ID: mdl-31130594

ABSTRACT

The electro-Fenton system has the ability to degrade wastewater and has received attention from many researchers. Currently, the core development objective is to effectively increase the degraded wastewater decolorization efficiency in the system. In this study, to improve the electro-Fenton system reaction rate and overall electrical properties, we used polyvinylidene difluoride to fix carbon nanotubes (CNTs) and graphene onto the system cathode (carbon felt electrode), which was then used to process Reactive Black 5 wastewater. Furthermore, we (1) used scanning electron microscopy to observe the structural changes in the electrode surface after modification; (2) used the Tafel curve to determine the electrode corrosion voltage and corrosion rate; and (3) analyzed the azo-dye decolorization level. The results showed that the maximum system decolorization rates of the CNT- and graphene-modified carbon felt electrodes were 55.3% and 70.1%, respectively. These rates were, respectively, 1.2 and 1.5 times higher than that of the unmodified carbon felt electrode, implying that we successfully improved the cathode characteristics. The modified electrode exhibited an improved conductivity and corrosion resistance, which, in turn, improved the system decolorization efficiency. This significantly increased the electro-Fenton system overall efficacy, making it valuable for future applications.

3.
Materials (Basel) ; 10(2)2017 Feb 13.
Article in English | MEDLINE | ID: mdl-28772533

ABSTRACT

Bio-electro-Fenton microbial fuel cells generate energy through the decomposition of organic matter by microorganisms. The generated electricity drives a Fenton reaction in a cathode chamber, which can be used for the decolorization of dye wastewater. Most of the previous works added expensive platinum catalyst to improve the electrical property of the system. In this research, aligned carbon nanotubes (CNTs) were generated on the surface of SS316 stainless steel by chemical vapor deposition, and an iron phthalocyanine (FePc) catalyst was added to fabricate a compound (FePc/CNT/SS316) that was applied to the cathode electrode of the fuel cell system. This was expected to improve the overall electricity generation efficiency and extent of decolorization of the system. The results showed that the maximum current density of the system with the modified electrode was 3206.30 mA/m², and the maximum power was 726.55 mW/m², which were increased by 937 and 2594 times, respectively, compared to the current and power densities of a system where only the SS316 stainless steel electrode was used. In addition, the decolorization of RB5 dye reached 84.6% within 12 h. Measurements of the electrical properties of bio-electro-Fenton microbial fuel cells and dye decolorization experiments with the FePc/CNT/SS316 electrode showed good results.

4.
Sensors (Basel) ; 14(4): 6877-90, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24743159

ABSTRACT

The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a ß-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...