Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
BMC Gastroenterol ; 19(1): 41, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30885145

ABSTRACT

BACKGROUND: Metabolic disorders such as insulin resistance, obesity, and hyperglycemia are prominent risk factors for the development of non-alcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH). Dietary rodent models employ high fat, high cholesterol, high fructose, methionine/choline deficient diets or combinations of these to induce NAFLD/NASH. The FATZO mice spontaneously develop the above metabolic disorders and type 2 diabetes (T2D) when fed with a normal chow diet. The aim of the present study was to determine if FATZO mice fed a high fat and fructose diet would exacerbate the progression of NAFLD/NASH. METHODS: Male FATZO mice at the age of 8 weeks were fed with high fat Western diet (D12079B) supplemented with 5% fructose in the drinking water (WDF) for the duration of 20 weeks. The body weight, whole body fat content, serum lipid profiles and liver function markers were examined monthly along with the assessment of liver histology for the development of NASH. In addition, the effects of obeticholic acid (OCA, 30 mg/kg, QD) on improvement of NASH progression in the model were evaluated. RESULTS: Compared to normal control diet (CD), FATZO mice fed with WDF were heavier with higher body fat measured by qNMR, hypercholesterolemia and had progressive elevations in AST (~ 6 fold), ALT (~ 6 fold), liver over body weight (~ 2 fold) and liver triglyceride (TG) content (1.4-2.9 fold). Histological examination displayed evidence of NAFLD/NASH, including hepatic steatosis, lobular inflammation, ballooning and fibrosis in FATZO mice fed WDF. Treatment with OCA for 15 weeks in FATZO mice on WDF significantly alleviated hypercholesterolemia and elevation of AST/ALT, reduced liver weight and liver TG contents, attenuated hepatic ballooning, but did not affect body weight and blood TG levels. CONCLUSION: WDF fed FATZO mice represent a new model for the study of progressive NAFLD/NASH with concurrent metabolic dysregulation.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diet, High-Fat/adverse effects , Diet, Western/adverse effects , Disease Models, Animal , Fructose/adverse effects , Non-alcoholic Fatty Liver Disease/etiology , Obesity/complications , Sweetening Agents/adverse effects , Animals , Disease Progression , Liver/pathology , Liver/physiopathology , Male , Mice , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/physiopathology
2.
BMC Anesthesiol ; 13(1): 33, 2013 Oct 20.
Article in English | MEDLINE | ID: mdl-24138083

ABSTRACT

BACKGROUND: The α2-adrenoceptor agonist xylazine as an anesthetic has been widely used either alone or in combination with other anesthetics, such as ketamine, in veterinary clinic and research. In the last decade xylazine has been used in drug abusers in certain geographic area. This study investigated the effects of xylazine on blood glucose level and insulin secretion in normoglycemic and insulin-dependent diabetic monkeys. METHODS: Both adult cynomolgus (n = 10) and rhesus (n = 8) monkeys with either sex were used in the study. Xylazine (1-2 mg/kg) was administrated intramuscularly. Blood glucose, insulin, glucagon and glucagon-like peptide 1 in overnight-fasted monkeys were measured immediately before and after xylazine administration. The hyperinsulinemic-euglycemic clamp method was used in the study for assessing the potential mechanism of xylazine-induced hyperglycemia. RESULTS: Xylazine administration increased the blood glucose levels from 58 ± 3 to 108 ± 12 mg/dL in normoglycemic (n = 5, p < 0.01) and from 158 ± 9 to 221 ± 13 mg/dL in insulin-dependent diabetic (n = 5, p < 0.01) monkeys and was not accompanied by any significant changes in blood insulin, glucagon, and glucagon-like peptide-1. Xylazine-induced hyperglycemia occurred within 10 min and reached the peak at 35 min after injection. Xylazine-induced hyperglycemia declined slowly in diabetic animals. The α2-adrenoceptor antagonist yohimbine was administrated to bring down the elevated glucose level to the pre-xylazine one in 4 out of 5 diabetic animals. To assess the potential mechanism, the hyperinsulinemic-euglycemic clamp was used to maintain a nearly saturated and constant insulin level for minimizing endogenous insulin glucoregulation. Xylazine administration decreased glucose infusion rate, from 14.3 ± 1.4 to 8.3 ± 0.8 mg/min/kg (n = 6, p < 0.01) in normoglycemic rhesus monkeys, which indicates that the glucose metabolic rate (M rate) was decreased by xylazine. In addition, after clamping blood glucose level in a range of 55 to 75 mg/dL for 40 min with constant glucose infusion, xylazine administration still increased blood glucose concentration. CONCLUSIONS: We conclude that xylazine administration induces hyperglycemia in normoglycemic and insulin-dependent diabetic monkeys potentially via stimulation of α2-adrenoceptors and then reducing tissue sensitivity to insulin and glucose uptake.

3.
Diabetol Metab Syndr ; 5(1): 40, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23886319

ABSTRACT

BACKGROUND: Quantitation of ß-cell function is critical in better understanding of the dynamic interactions of insulin secretion, clearance and action at different phases in the progression of diabetes. The present study aimed to quantify ß-cell secretory function independently of insulin sensitivity in the context of differential metabolic clearance rates of insulin (MCRI) in nonhuman primates (NHPs). METHODS: Insulin secretion rate (ISR) was derived from deconvolution of serial C-peptide concentrations measured during a 5 stage graded glucose infusion (GGI) in 12 nondiabetic (N), 8 prediabetic or dysmetabolic (DYS) and 4 overtly diabetic (DM) cynomolgus monkeys. The characterization of the monkeys was based on the fasting glucose and insulin concentrations, glucose clearance rate measured by intravenous glucose tolerance test, and insulin resistance indices measured in separate experiments. The molar ratio of C-peptide/insulin (C/I) was used as a surrogate index of hepatic MCRI. RESULTS: Compared to the N monkeys, the DYS with normal glycemia and hyperinsulinemia had significantly higher basal and GGI-induced elevation of insulin and C-peptide concentrations and lower C/I, however, each unit of glucose-stimulated ISR increment was not significantly different from that in the N monkeys. In contrast, the DM monkeys with ß-cell failure and hyperglycemia had a depressed GGI-stimulated ISR response and elevated C/I. CONCLUSIONS: The present data demonstrated that in addition to ß-cell hypersecretion of insulin, reduced hepatic MCRI may also contribute to the development of hyperinsulinemia in the DYS monkeys. On the other hand, hyperinsulinemia may cause the saturation of hepatic insulin extraction capacity, which in turn reduced MCRI in the DYS monkeys. The differential contribution of ISR and MCRI in causing hyperinsulinemia provides a new insight into the trajectory of ß-cell dysfunction in the development of diabetes. The present study was the first to use the GGI and C-peptide deconvolution method to quantify the ß-cell function in NHPs.

4.
Bioorg Med Chem Lett ; 21(3): 983-8, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21211973

ABSTRACT

1-(1-Acetyl-piperidin-4-yl)-3-adamantan-1-yl-urea 14a (AR9281), a potent and selective soluble epoxide hydrolase inhibitor, was recently tested in a phase 2a clinical setting for its effectiveness in reducing blood pressure and improving insulin resistance in pre-diabetic patients. In a mouse model of diet induced obesity, AR9281 attenuated the enhanced glucose excursion following an intraperitoneal glucose tolerance test. AR9281 also attenuated the increase in blood pressure in angiotensin-II-induced hypertension in rats. These effects were dose-dependent and well correlated with inhibition of the sEH activity in whole blood, consistent with a role of sEH in the observed pharmacology in rodents.


Subject(s)
Adamantane/analogs & derivatives , Antihypertensive Agents/chemistry , Enzyme Inhibitors/chemistry , Epoxide Hydrolases/antagonists & inhibitors , Hypertension/drug therapy , Insulin Resistance , Urea/analogs & derivatives , Adamantane/chemistry , Adamantane/pharmacokinetics , Adamantane/therapeutic use , Administration, Oral , Angiotensin II/pharmacology , Animals , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/therapeutic use , Blood Glucose/analysis , Disease Models, Animal , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/metabolism , Hypertension/chemically induced , Mice , Obesity/drug therapy , Rats , Urea/chemistry , Urea/pharmacokinetics , Urea/therapeutic use
5.
Eur J Pharmacol ; 654(1): 68-74, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21187082

ABSTRACT

Endothelial dysfunction is a hallmark of, and plays a pivotal role in the pathogenesis of cardiometabolic diseases, including type II diabetes, obesity, and hypertension. It has been well established that epoxyeicosatrienoic acids (EETs) act as an endothelial derived hyperpolarization factor (EDHF). Soluble epoxide hydrolase (s-EH) rapidly hydrolyses certain epoxylipids (e.g. EETs) to less bioactive diols (DHETs), thereby attenuating the evoked vasodilator effects. The aim of the present study was to examine if inhibition of s-EH can restore impaired endothelial function in three animal models of cardiometabolic diseases. Isolated vessel rings of the aorta and/or mesenteric artery from mice or rats were pre-contracted using phenylephrine or U46619. Endothelium-dependent and independent vasorelaxation to acetylcholine and sodium nitroprusside (SNP) were measured using wire myography in vessels isolated from db/db or diet-induced obesity (DIO) mice, and angiotensin II-induced hypertensive rats treated chronically with s-EH inhibitors AR9281 or AR9276 or with vehicle. Vasorelaxation to acetylcholine, but not to SNP was severely impaired in all three animal models. Oral administration of AR9281 or AR9276 abolished whole blood s-EH activity, elevated epoxy/diol lipid ratio, and abrogated endothelial dysfunction in all three models. Incubating the mesenteric artery of db/db mice with L-NAME and indomethacin to block nitric oxide (NO) and prostacyclin formation did not affect AR9821-induced improvement of endothelial function. These data indicate that inhibition of s-EH ameliorates endothelial dysfunction and that effects in the db/db model are independent of the presence of NO and cyclooxygenase derived prostanoids. Thus, preserving vasodilator EETs by inhibition of s-EH may be of therapeutic benefit by improving endothelial function in cardiometabolic diseases.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Epoxide Hydrolases/antagonists & inhibitors , Obesity/drug therapy , Adamantane/administration & dosage , Adamantane/analogs & derivatives , Adamantane/pharmacology , Administration, Oral , Animals , Aorta/drug effects , Aorta/metabolism , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Epoxide Hydrolases/metabolism , Hypertension/drug therapy , Hypertension/physiopathology , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Mice , Mice, Inbred C57BL , Niacinamide/administration & dosage , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Obesity/physiopathology , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/pharmacology , Rats , Rats, Sprague-Dawley , Urea/administration & dosage , Urea/analogs & derivatives , Urea/pharmacology , Vasodilation/drug effects
6.
Curr Atheroscler Rep ; 12(3): 174-83, 2010 May.
Article in English | MEDLINE | ID: mdl-20425256

ABSTRACT

Like many eicosanoids, epoxyeicosatrienoic acids (EETs) have multiple biological functions, including reduction of blood pressure, inflammation, and atherosclerosis in multiple species. Hydration of EETs by the soluble epoxide hydrolase (sEH) is the major route of their degradation to the less bioactive diols. Inhibition of the sEH stabilizes EETs, thus, enhancing the beneficial effects of EETs. Human data show an association of sEH (Ephx2) gene polymorphisms with increased risk of atherosclerosis and cardiovascular diseases. These data suggest a potential therapeutic effect of sEH inhibitors (sEHI) in the treatment of atherosclerosis. Indeed, two laboratories reported independently that using different sEHIs in apolipoprotein E-deficient mice significantly attenuated atherosclerosis development and aneurysm formation. The antiatherosclerotic effects of sEHI are correlated with elevation in EET levels and associated with reduction of low-density lipoprotein and elevation of high-density lipoprotein cholesterols, as well as attenuation of expression of proinflammatory genes and proteins. In addition, the antihypertensive effects and improvement of endothelial function also contribute to the mechanism of the antiatherosclerotic effects of sEHI. The broad spectrum of biological action of EETs and sEHIs with multiple biological beneficial actions provides a promising new class of therapeutics for atherosclerosis and other cardiovascular diseases.


Subject(s)
Atherosclerosis/enzymology , Epoxide Hydrolases/blood , Polymorphism, Genetic , Animals , Atherosclerosis/genetics , Atherosclerosis/therapy , Epoxide Hydrolases/genetics , Genetic Therapy/methods , Humans , Prognosis
7.
Arterioscler Thromb Vasc Biol ; 29(9): 1265-70, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19667112

ABSTRACT

OBJECTIVE: Epoxyeicosatrienoic acids (EETs) have been shown to have antiinflammatory effects and therefore may play a role in preventing vascular inflammatory and atherosclerotic diseases. Soluble epoxide hydrolase (s-EH) converts EETs into less bioactive dihydroxyeicosatrienoic acids. Thus, inhibition of s-EH can prevent degradation of EETs and prolong their effects. The present study aimed to test the hypothesis that inhibition of s-EH has vascular protective effects. METHODS AND RESULTS: Six-month-old apolipoprotein E-deficient mice were chronically infused with angiotensin II (1.44 mg/kg/d) for 4 weeks to induce abdominal aortic aneurysm (AAA), accelerate atherosclerosis development and carotid artery ligation-induced vascular remodeling. The mice were treated with a novel s-EH inhibitor, AR9276 (1.5 g/L in drinking water) or vehicle for 4 weeks. The results demonstrated that AR9276 significantly reduced the rate of AAA formation and atherosclerotic lesion area, but had no effect on ligation-induced carotid artery remodeling. These effects were associated with a reduction of serum lipid, IL-6, murine IL-8-KC, and IL-1alpha, and downregulation of gene expressions of ICAM-1, VCAM-1, and IL-6 in the arterial wall. CONCLUSIONS: The present data demonstrate that treatment with an s-EH inhibitor attenuates AAA formation and atherosclerosis development. The attendant downregulation of inflammatory mediators and lipid lowering effects may both contribute to the observed vascular protective effects.


Subject(s)
Aortic Aneurysm, Abdominal/prevention & control , Atherosclerosis/prevention & control , Dyslipidemias/prevention & control , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Administration, Oral , Angiotensin II , Animals , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/enzymology , Aortic Aneurysm, Abdominal/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/chemically induced , Atherosclerosis/enzymology , Atherosclerosis/pathology , Biological Availability , Carotid Arteries/drug effects , Carotid Arteries/pathology , Carotid Arteries/surgery , Cholesterol/blood , Disease Models, Animal , Down-Regulation , Dyslipidemias/chemically induced , Dyslipidemias/enzymology , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Epoxide Hydrolases/metabolism , Inflammation Mediators/blood , Intercellular Adhesion Molecule-1/genetics , Interleukin-1alpha/blood , Interleukin-6/blood , Interleukin-6/genetics , Interleukin-8/blood , Ligation , Male , Mice , Mice, Knockout , Vascular Cell Adhesion Molecule-1/genetics
8.
Arthritis Res Ther ; 9(6): R123, 2007.
Article in English | MEDLINE | ID: mdl-18036238

ABSTRACT

Murine collagen-induced arthritis (CIA) has become a valuable animal model for elucidating pathogenic mechanisms and evaluating therapeutic effects for rheumatoid arthritis. Recent advances in digital imaging and computer technology have enabled gait analysis to develop into a powerful tool for objectively detecting functional deficits in human and animal models. The present study explored the use of non-invasive video-capture gait analysis in the evaluation of a murine CIA model. CIA was induced in 45 female DBA/1LacJ mice (8 to 10 weeks old) by immunization with lyophilized bovine articular type II collagen. Gait parameters were determined by ventral plane videography and were correlated to traditional arthritis clinical scores. Our results showed that increases in clinical scores that measure the severity of CIA corresponded to changes in multiple gait parameters that reflect both morphologic (increases in paw area) and functional (increase in stride frequency, decrease in stride length, hind-limb paw placement angle, as well as stride, stance, and braking times) deficits. Our work indicated that the non-invasive video-capture device may be used as a simple and objective data acquisition system for quantifying gait disturbances in CIA mice for the investigation of mechanisms and the evaluation of therapeutic agents.


Subject(s)
Arthritis, Experimental/physiopathology , Gait/physiology , Lameness, Animal/physiopathology , Animals , Arthritis, Experimental/complications , Arthritis, Rheumatoid/physiopathology , Biomechanical Phenomena , Female , Humans , Lameness, Animal/etiology , Mice , Mice, Inbred DBA , Time Factors , Video Recording
9.
Curr Diab Rep ; 7(4): 265-8, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17686401

ABSTRACT

Accumulating evidence demonstrates that measures of vascular compliance correlate with endothelial function in animal models and patients with cardiovascular, metabolic, and kidney diseases. Nitric oxide modulates not only endothelial function, but also vascular compliance. Disruption of normal endothelial function may, at least partially, be responsible for reduced vascular compliance. Thus, nitric oxide may play a pivotal role as a mechanistic link between impaired vascular compliance and endothelial dysfunction.


Subject(s)
Blood Vessels/physiopathology , Endothelium, Vascular/physiopathology , Blood Vessels/anatomy & histology , Endothelium, Vascular/anatomy & histology , Humans , Nitric Oxide/physiology , Risk Factors , Vascular Diseases/physiopathology
10.
Cardiovasc Pathol ; 16(4): 231-6, 2007.
Article in English | MEDLINE | ID: mdl-17637431

ABSTRACT

BACKGROUND: Angiotensin II (Ang II) promotes atherosclerotic vascular diseases, in which proinflammatory and proliferative effects play a major pathogenic role. Ang II up-regulates chemokines, such as monocyte chemoattractant protein (MCP)-1 and macrophage inflammatory protein (MIP)-1alpha, which are important pro-inflammatory factors mediating infiltration of inflammatory cells into atherosclerotic lesion. The aim of the present study was to determine whether the presence of MCP-1 or MIP-1alpha is essential in Ang II-induced intimal hyperplasia in the carotid artery ligation model. METHODS: Six-month-old male C57BL/6-, MCP-1-, or MIP-1alpha-deficient mice underwent ligation of the common left carotid artery and were randomly assigned to receive either vehicle or Ang II (1.4 mg kg(-1) day(-1)) via a subcutaneously implanted osmotic infusion pump (model 2004, Alzet) for 4 weeks. RESULTS: Ang II not only increased MCP-1 and MIP-1alpha production but also enhanced neo-intimal formation, media thickness, and adventitia development in the ligated carotid arteries in C57BL/6 mice. However, MCP-1 or MIP-1alpha deficiency failed to affect intimal hyperplasia in vascular remodeling. CONCLUSION: These results indicate that MCP-1 or MIP-1alpha may not be essential in mediating the proliferative effects of Ang II, a major pathological changes in intimal hyperplasia in the carotid artery ligation model.


Subject(s)
Angiotensin II/metabolism , Carotid Arteries/metabolism , Chemokine CCL2/metabolism , Macrophage Inflammatory Proteins/metabolism , Tunica Intima/pathology , Animals , Carotid Arteries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Chemokine CCL3 , Chemokine CCL4 , Hyperplasia , Immunohistochemistry , Ligation , Male , Mice , Mice, Inbred C57BL , Tunica Intima/metabolism
11.
J Vasc Surg ; 44(2): 364-71, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16890870

ABSTRACT

BACKGROUND: We explored the role of angiotensin II in determining the histomorphometric features of plaque stability in apolipoprotein E-deficient mice submitted to ligation of the carotid artery. METHODS: Six-month-old apolipoprotein E-deficient mice underwent ligation of the common left carotid artery and were immediately assigned to receive either angiotensin II (1.4 mg . kg(-1) . d(-1) subcutaneously) or vehicle (phosphate-buffered saline; control) via a subcutaneous osmotic minipump for 4 weeks. RESULTS: Ligated arteries from control animals developed intimal lesions composed of macrophage foam cell plaques, which accumulated adjacent to the internal elastic lamina and were surrounded by a fibromuscular layer. Angiotensin II-treated mice had a greater intimal area (threefold), which was accompanied by a fivefold increase in the foam cell area. Lesions from angiotensin II-treated mice also displayed complex morphology characterized by intralesional neovasculature and hemorrhage. The content of active matrix metalloproteinase 2, mainly colocalized with macrophage foam cells, and the production of the inflammatory mediators monocyte chemoattractant protein 1 and vascular cell adhesion molecule 1 were also increased by angiotensin II treatment. Although angiotensin II induced vessel expansion and lumen loss to a similar extent, only vessel enlargement correlated with intimal area. CONCLUSIONS: Taken together, this study's results support a role of angiotensin II in plaque vulnerability by promoting intraplaque neovascularization/hemorrhage, inflammation, and expansive remodeling.


Subject(s)
Angiotensin II , Atherosclerosis/pathology , Carotid Arteries/pathology , Carotid Artery Diseases/pathology , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/etiology , Atherosclerosis/metabolism , Carotid Arteries/drug effects , Carotid Arteries/surgery , Carotid Artery Diseases/etiology , Carotid Artery Diseases/metabolism , Chemokine CCL2/metabolism , Disease Models, Animal , Foam Cells/drug effects , Foam Cells/pathology , Immunohistochemistry , Ligation , Male , Matrix Metalloproteinase 2/metabolism , Mice , Mice, Knockout , Tunica Intima/drug effects , Tunica Intima/metabolism , Tunica Intima/pathology , Vascular Cell Adhesion Molecule-1/metabolism
12.
Atherosclerosis ; 178(1): 9-17, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15585195

ABSTRACT

Angiotensin converting enzyme (ACE) inhibitors prevent a wide variety of key events underlying atherogenesis. Whether these actions depend solely on reduction of angiotensin II (Ang II) generation is still to be determined. This study was undertaken to determine whether enalapril, an ACE inhibitor, prevents atherosclerosis and vascular inflammation induced by Ang II in apolipoprotein E-deficient (apoE-KO) mice. Subcutaneous infusion of Ang II (1.44 mg/(kg day)) for 4 weeks increased blood pressure and accelerated atherosclerosis development in the carotid arteries. The expression of the endothelial adhesion molecules E-selectin, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as the chemokines monocyte chemotactic protein-1 (MCP-1) and macrophage-colony stimulating factor (M-CSF) was up-regulated in the aortas of Ang II-treated mice. Enalapril co-treatment (25 mg/(kg day), in drinking water) prevented the development of atherosclerosis without affecting blood pressure or circulating cholesterol. In addition to preventing the Ang II-induced over-expression of adhesion molecules and chemokines in the aorta, enalapril up-regulated the expression of peroxisome proliferator-activated receptors (PPARs)-alpha and -gamma, potential anti-inflammatory transcription factors. In the aortic arch, a lesion-prone site, the co-treatment with enalapril reduced the percentage of arterial wall occupied by macrophages and foam cells, medial sclerosis and elastin reduplication. Together, these data suggest an important role for Ang II-independent mechanisms in the antiatherogenic and anti-inflammatory effects of ACE inhibitors.


Subject(s)
Angiotensin II , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Arteriosclerosis/chemically induced , Arteriosclerosis/pathology , Enalapril/pharmacology , Vasculitis/chemically induced , Vasculitis/pathology , Animals , Aorta/metabolism , Aortic Aneurysm/chemically induced , Aortic Aneurysm/prevention & control , Apolipoproteins E/deficiency , Cell Adhesion Molecules/genetics , Chemokines/metabolism , Endothelium/metabolism , Gene Expression/drug effects , Male , Mice , Mice, Knockout , PPAR alpha/genetics , PPAR gamma/genetics , RNA, Messenger/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...