Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 232
Filter
1.
Heliyon ; 10(16): e35862, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224276

ABSTRACT

Pain sensitivity varies depending on both the state and age of an individual. For example, chronic pain is more common in older individuals, but the underlying mechanisms remain unknown. This study revealed that 18-month-old mice (aged) experienced more severe and long-lasting allodynia and hyperalgesia in the chronic constriction injury (CCI)-induced pain state compared to 2-month-old mice. Interestingly, the aged mice had a higher baseline mechanical pain threshold than the adult mice. The expression of spinal receptor-active modification protein 1 (RAMP1), as a key component and regulator of the calcitonin gene-related peptide (CGRP) receptor for nociceptive transmission from the periphery to the spinal cord, was reduced in the physiological state but significantly increased after CCI in the aged mice compared to the adult mice. Moreover, when RAMP1 was knocked down using shRNA, the pain sensitivity of adult mice decreased significantly, and CCI-induced allodynia in aged mice was reduced. These findings suggest that spinal RAMP1 is involved in regulating pain sensitivity in a state- and age-dependent manner. Additionally, interfering with RAMP1 could be a promising strategy for alleviating chronic pain in older individuals.

2.
Environ Sci Ecotechnol ; 22: 100448, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39104554

ABSTRACT

Due to the transboundary nature of air pollutants, a province's efforts to improve air quality can reduce PM2.5 concentration in the surrounding area. The inter-provincial PM2.5 pollution transport could bring great challenges to related environmental management work, such as financial fund allocation and subsidy policy formulation. Herein, we examined the transport characteristics of PM2.5 pollution across provinces in 2013 and 2020 via chemical transport modeling and then monetized inter-provincial contributions of PM2.5 improvement based on pollutant emission control costs. We found that approximately 60% of the PM2.5 pollution was from local sources, while the remaining 40% originated from outside provinces. Furthermore, about 1011 billion RMB of provincial air pollutant abatement costs contributed to the PM2.5 concentration decline in other provinces during 2013-2020, accounting for 41.2% of the total abatement costs. Provinces with lower unit improvement costs for PM2.5, such as Jiangsu, Hebei, and Shandong, were major contributors, while Guangdong, Guangxi, and Fujian, bearing higher unit costs, were among the main beneficiaries. Our study identifies provinces that contribute to air quality improvement in other provinces, have high economic efficiency, and provide a quantitative framework for determining inter-provincial compensations. This study also reveals the uneven distribution of pollution abatement costs (PM2.5 improvement/abatement costs) due to transboundary PM2.5 transport, calling for adopting inter-provincial economic compensation policies. Such mechanisms ensure equitable cost-sharing and effective regional air quality management.

3.
Front Public Health ; 12: 1425843, 2024.
Article in English | MEDLINE | ID: mdl-39165777

ABSTRACT

Background: There is a growing interest in the use of complementary therapies for the prevention of disease and the maintenance of health. Furthermore, complementary therapies that incorporate exercise are becoming increasingly prevalent among the older adult, and thus may represent a crucial strategy for the primary and secondary prevention of cardiovascular disease (CVD). Exercise therapy, as a means to prevent and treat cardiovascular diseases, has been gradually applied in clinical practice. It has the advantages of reducing mortality, improving clinical symptoms, restoring physical function and improving quality of life. In recent years, traditional Chinese sports such as Ba Duan Jin and Qigong have developed rapidly. Therefore, a comprehensive systematic review is required to examine interventions involving Ba Duan Jin exercise in healthy adults or those at increased risk of CVD in order to determine the effectiveness of Ba Duan Jin exercise for the primary prevention of CVD. Objective: To investigate the effect of Ba Duan Jin exercise intervention for the primary prevention of cardiovascular diseases. Methods: Eight databases were systematically searched from inception to July, 2024 for randomized controlled trials (RCTs) to evaluated the impact of Ba Duan Jin exercise intervention on cardiovascular diseases. The search terms were "Cardiovascular diseases" "Ba Duan Jin" and "Randomized controlled." The Cochrane risk assessment tool was used to evaluate the study quality, and the meta-analysis was performed using Rev. Man 5.4 software. Results: Seventeen completed trials were conducted with 1,755 participants who were randomly assigned and met the inclusion criteria. All 17 studies were conducted in China. The meta-analysis indicates that Ba Duan Jin exercise therapy can provide long-term benefits (20-30 years) by reducing all-cause mortality (RR = 0.55, 95% CI: 0.44-0.68, p < 0.01) and stroke mortality (RR = 0.49, 95% CI: 0.36-0.66, p < 0.01) in hypertensive patients. Subgroup analyses reveal that Ba Duan Jin exercise therapy decreases SBP (MD = -4.05, 95% CI = -6.84 to -1.26, p < 0.01) and DBP (MD = -3.21, 95% CI = -5.22 to -1.20, p < 0.01) levels in patients with essential hypertension, significantly reduces serum TC (MD = -0.78, 95% CI = -1.06 to -0.50, p < 0.01), TG (MD = -0.78, 95% CI = -0.93 to -0.62, p < 0.01), and LDL-C (MD = -0.76, 95% CI = -0.92 to -0.60, p < 0.01) levels in patients with hyperlipidemia, increases HDL-C (MD = 0.32, 95% CI = 0.14-0.51, p < 0.01) levels, and produces beneficial effects on cardiovascular function. Additionally, it can alleviate anxiety (MD = -3.37, 95% CI = -3.84 to -2.89, p < 0.01) and improve sleep quality (MD = -2.68, 95% CI = -3.63to -1.73, p < 0.01). Conclusion: Ba Duan Jin exercise therapy can improve the physical and mental condition and quality of life of patients with cardiovascular diseases, and it is worthy of further promotion and application in clinical practice. Systematic review registration: PROSPERO, identifier: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024496934.


Subject(s)
Cardiovascular Diseases , Randomized Controlled Trials as Topic , Humans , Cardiovascular Diseases/prevention & control , Exercise Therapy , Qigong , Male , Quality of Life , Middle Aged , Primary Prevention , Adult , Female
4.
ACS Nano ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174015

ABSTRACT

Cardiac fibrosis is a prevalent pathological process observed in the progression of numerous cardiovascular diseases and is associated with an increased risk of sudden cardiac death. Although the BRD4 inhibitor JQ1 has powerful antifibrosis properties, its clinical application is extremely limited due to its side effects. There remains an unmet need for effective, safe, and low-cost treatments. Here, we present a multifunctional biomimetic nanoparticle drug delivery system (PM&EM nanoparticles) assembled by platelet membranes and erythrocyte membranes for targeted JQ1 delivery in treating cardiac fibrosis. The platelet membrane endows PM&EM nanoparticles with the ability to target cardiac myofibroblasts and collagen, while the participation of the erythrocyte membrane enhances the long-term circulation ability of the formulated nanoparticles. In addition, PM&EM nanoparticles can deliver sufficient JQ1 with controllable release, achieving excellent antifibrosis effects. Based on these advantages, it is demonstrated in both pressures overloaded induced mouse cardiac fibrosis model and MI-induced mouse cardiac fibrosis that injection of the fusion membrane biomimetic nanodrug carrier system effectively reduced fibroblast activation, collagen secretion, and improved cardiac fibrosis. Moreover, it significantly mitigated the toxic and side effects of long-term JQ1 treatment on the liver, kidney, and intestinal tract. Mechanically, bioinformatics prediction and experimental validation revealed that PM&EM/JQ1 NPs reduced liver and kidney damage via alleviated oxidative stress and mitigated cardiac fibrosis via the activation of oxidative phosphorylation activation. These results highlight the potential value of integrating native platelet and erythrocyte membranes as a multifunctional biomimetic drug delivery system for treating cardiac fibrosis and preventing drug side effects.

5.
J Adv Nurs ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164078

ABSTRACT

AIMS: To analyse the current status of psychological resilience in Parkinson's disease (PD) patients and its correlation with social support and coping style. DESIGN: A cross-sectional study. METHODS: PD patients hospitalized in a tertiary-level hospital in Shijiazhuang, Hebei Province, from March 2022 to March 2023 were selected for the study using the convenience sampling method. A general information questionnaire, psychological resilience scale, Medical Coping Modes Questionnaire and Perceived Social Support Scale were used to investigate 111 cases of PD. SPSS 25.0 software was used for statistical analysis. The data were analysed using independent samples t-test, one-way ANOVA, multiple linear regression analysis and the Pearson correlation coefficient. RESULTS: Parkinson's disease patients have a moderate level of psychological resilience. The results of the Pearson correlation analyses showed that the level of psychological resilience was positively correlated with social support and confrontation and was negatively correlated with avoidance and acceptance-resignation. The results of multiple linear regression analysis showed that social support and acceptance-resignation were the influencing factors of psychological resilience in PD patients. CONCLUSION: The psychological resilience of PD patients is at a moderate level. Social support and acceptance-resignation are the factors influencing the psychological resilience of PD patients. IMPACT STATEMENT: This study analysed the level of psychological resilience in PD patients and its correlation with social support and coping style from the perspective of positive psychology to provide some reference for targeted clinical interventions. Our study found that social support and acceptance-resignation are influential factors in psychological resilience in PD patients. Medical staff should encourage patients to face the disease positively and their social support should be increased in order to improve their level of psychological resilience. PATIENT OR PUBLIC CONTRIBUTION: No patient or public contribution.

6.
Environ Sci Technol ; 58(35): 15381-15394, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39136294

ABSTRACT

China is confronting the dual challenges of air pollution and climate change, mandating the co-control of air pollutants and CO2 emissions from their shared sources. Here we identify key sources for co-control that prioritize the mitigation of PM2.5-related health burdens, given the homogeneous impacts of CO2 emissions from various sources. By applying an integrated analysis framework that consists of a detailed emission inventory, a chemical transport model, a multisource fused dataset, and epidemiological concentration-response functions, we systematically evaluate the contribution of emissions from 390 sources (30 provinces and 13 socioeconomic sectors) to PM2.5-related health impacts and CO2 emissions, as well as the marginal health benefits of CO2 abatement across China. The estimated source-specific contributions exhibit substantial disparities, with the marginal benefits varying by 3 orders of magnitude. The rural residential, transportation, metal, and power and heating sectors emerge as pivotal sources for co-control, with regard to their relatively large marginal benefits or the sectoral total benefits. In addition, populous and heavily industrialized provinces such as Shandong and Henan are identified as the key regions for co-control. Our study highlights the significance of incorporating health benefits into formulating air pollution and carbon co-control strategies for improving the overall social welfare.


Subject(s)
Air Pollutants , Air Pollution , Carbon Dioxide , China , Carbon Dioxide/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Climate Change , Environmental Monitoring
7.
Int J Mol Sci ; 25(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39201364

ABSTRACT

Monkeypox virus (MPXV) is a cross-kingdom pathogen infecting both humans and wildlife, which poses a significant health risk to the public. Although MPXV attracts broad attention, there is a lack of adequate studies to elucidate pathogenic mechanisms associated with viral infections. In this study, a high-throughput RNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach was used to explore the transcriptional and metabolic responses of MPXV A23 protein to HEK293T cells. The protein-protein interactions and signaling pathways were conducted by GO and KEGG analyses. The localization of A23 protein in HEK293T cells was detected by immunofluorescence. A total of 648 differentially expressed genes (DEGs) were identified in cells by RNA-Seq, including 314 upregulated genes and 334 downregulated genes. Additionally, liquid chromatography-tandem mass spectrometry (LC-MS/MS) detected 115 cellular proteins that interact with the A23 proteins. Transcriptomic sequencing analysis revealed that transfection of MPXV A23 protein modulated genes primarily associated with cellular apoptosis and DNA damage repair. Proteomic analysis indicated that this protein primarily interacted with host ribosomal proteins and histones. Following the identification of the nuclear localization sequence RKKR within the A23 protein, a truncated mutant A23ΔRKKR was constructed to investigate the subcellular localization of A23 protein. The wild-type A23 protein exhibits a significantly higher nuclear-to-cytoplasmic ratio, exceeding 1.5, in contrast to the mutant A23ΔRKKR, which has a ratio of approximately 1. Immunofluorescence assays showed that the A23 protein was mainly localized in the nucleus. The integration of transcriptomics and proteomics analysis provides a comprehensive understanding of the interaction between MPXV A23 protein and the host. Our findings highlight the potential role of this enzyme in suppressing host antiviral immune responses and modulating host gene expression.


Subject(s)
Monkeypox virus , Proteomics , Transcriptome , Viral Proteins , Humans , HEK293 Cells , Proteomics/methods , Viral Proteins/metabolism , Viral Proteins/genetics , Monkeypox virus/genetics , Monkeypox virus/metabolism , Tandem Mass Spectrometry , Gene Expression Profiling , Chromatography, Liquid , Proteome/metabolism
8.
Cancer Innov ; 3(4): e127, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948249

ABSTRACT

Background: Clinical studies have shown that atherosclerotic cardiovascular disease and cancer often co-exist in the same individual. The present study aimed to investigate the role of high-fat-diet (HFD)-induced obesity in the coexistence of the two diseases and the underlying mechanism in apolipoprotein E-knockout (ApoE-/-) mice. Methods: Male ApoE-/- mice were fed with a HFD or a normal diet (ND) for 15 weeks. On the first day of Week 13, the mice were inoculated subcutaneously in the right axilla with Lewis lung cancer cells. At Weeks 12 and 15, serum lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and vascular endothelial growth factor levels were measured by enzyme-linked immunosorbent assay, and blood monocytes and macrophages were measured by fluorescence-activated cell sorting. At Week 15, the volume and weight of the local subcutaneous lung cancer and metastatic lung cancer and the amount of aortic atherosclerosis were measured. Results: At Week 15, compared with mice in the ND group, those in the HFD group had a larger volume of local subcutaneous cancer (p = 0.0004), heavier tumors (p = 0.0235), more metastatic cancer in the lungs (p < 0.0001), a larger area of lung involved in metastatic cancer (p = 0.0031), and larger areas of atherosclerosis in the aorta (p < 0.0001). At Week 12, serum LOX-1, serum vascular endothelial growth factor, and proportions of blood monocytes and macrophages were significantly higher in the HFD group than those in the ND group (p = 0.0002, p = 0.0029, p = 0.0480, and p = 0.0106, respectively); this trend persisted until Week 15 (p = 0.0014, p = 0.0012, p = 0.0001, and p = 0.0204). Conclusions: In this study, HFD-induced obesity could simultaneously promote progression of lung cancer and atherosclerosis in the same mouse. HFD-induced upregulation of LOX-1 may play an important role in the simultaneous progression of these two conditions via the inflammatory response and VEGF.

9.
Front Pharmacol ; 15: 1393209, 2024.
Article in English | MEDLINE | ID: mdl-38895636

ABSTRACT

Background and objectives: Acute mountain sickness (AMS) is a pathology with different symptoms in which the organism is not adapted to the environment that occurs under the special environment of high altitude. Its main mechanism is the organism's tissue damage caused by acute hypobaric hypoxia. Traditional Chinese medicine (TCM) theory focuses on the holistic concept. TCM has made remarkable achievements in the treatment of many mountain sicknesses. This review outlines the pathogenesis of AMS in modern and traditional medicine, the progress of animal models of AMS, and summarizes the therapeutic effects of TCM on AMS. Methods: Using the keywords "traditional Chinese medicine," "herbal medicine," "acute mountain sickness," "high-altitude pulmonary edema," "high-altitude cerebral edema," "acute hypobaric hypoxia," and "high-altitude," all relevant TCM literature published up to November 2023 were collected from Scopus, Web of Science, PubMed, and China National Knowledge Infrastructure databases, and the key information was analyzed. Results: We systematically summarised the effects of acute hypobaric hypoxia on the tissues of the organism, the study of the methodology for the establishment of an animal model of AMS, and retrieved 18 proprietary Chinese medicines for the clinical treatment of AMS. The therapeutic principle of medicines is mainly invigorating qi, activating blood and removing stasis. The components of botanical drugs mainly include salidroside, ginsenoside Rg1, and tetrahydrocurcumin. The mechanism of action of TCM in the treatment of AMS is mainly through the regulation of HIF-1α/NF-κB signaling pathway, inhibition of inflammatory response and oxidative stress, and enhancement of energy metabolism. Conclusion: The main pathogenesis of AMS is unclear. Still, TCM formulas and components have been used to treat AMS through multifaceted interventions, such as compound danshen drip pills, Huangqi Baihe granules, salidroside, and ginsenoside Rg1. These components generally exert anti-AMS pharmacological effects by inhibiting the expression of VEGF, concentration of MDA and pro-inflammatory factors, down-regulating NF-κB/NLRP3 pathway, and promoting SOD and Na + -K + -ATPase activities, which attenuates acute hypobaric hypoxia-induced tissue injury. This review comprehensively analyses the application of TCM in AMS and makes suggestions for more in-depth studies in the future, aiming to provide some ideas and insights for subsequent studies.

10.
Plants (Basel) ; 13(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38891338

ABSTRACT

The root system plays a decisive role in the growth and development of plants. The water requirement of a root system depends strongly on the plant species. Potatoes are an important food and vegetable crop grown worldwide, especially under irrigation in arid and semi-arid regions. However, the expected impact of global warming on potato yields calls for an investigation of genes related to root development and drought resistance signaling pathways in potatoes. In this study, we investigated the molecular mechanisms of different drought-tolerant potato root systems in response to drought stress under controlled water conditions, using potato as a model. We analyzed the transcriptome and proteome of the drought-sensitive potato cultivar Atlantic (Atl) and the drought-tolerant cultivar Qingshu 9 (Q9) under normal irrigation (CK) and weekly drought stress (D). The results showed that a total of 14,113 differentially expressed genes (DEGs) and 5596 differentially expressed proteins (DEPs) were identified in the cultivars. A heat map analysis of DEGs and DEPs showed that the same genes and proteins in Atl and Q9 exhibited different expression patterns under drought stress. Weighted gene correlation network analysis (WGCNA) showed that in Atl, Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)-enriched pathways were related to pyruvate metabolism and glycolysis, as well as cellular signaling and ion transmembrane transporter protein activity. However, GO terms and KEGG-enriched pathways related to phytohormone signaling and the tricarboxylic acid cycle were predominantly enriched in Q9. The present study provides a unique genetic resource to effectively explore the functional genes and uncover the molecular regulatory mechanism of the potato root system in response to drought stress.

11.
Environ Technol ; : 1-10, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820584

ABSTRACT

The conventional aeration method is compulsorily continuous ventilation or aeration at equal intervals, and a uniform aeration rate does not vary during composting. A dynamic on-demand aeration approach based on the diverse oxygen consumption of microorganisms at different composting stages could solve the problems of insufficient oxygen supply or excessive aeration. This study aims to design an aerobic composting system with dynamic aeration, investigate the effects of dynamic aeration on the temperature rise and physicochemical characteristics during the aerobic composting of corn straw and pig manure, and optimise the control parameters of oxygen concentration. Higher temperatures and longer high-temperature durations were achieved under dynamic aeration, thereby accelerating the decomposition of organic compounds. Dynamic aeration effectively reduced the aeration frequency, the convective latent heat and moisture losses, and the power consumption in the middle and later stages of composting. The dynamic aeration regulated according to the oxygen concentration of 14%-17% in the exhaust was optimum. Under the optimal conditions, the period above 50 ℃ lasted 8.5 days, and the highest temperature, organic matter removal, and seed germination index reached 65.82 ℃, 37.59%, and 74.59%, respectively. The power consumption was decreased by 33.58% compared to the traditional intermittent aeration. Dynamic aeration would be a competitive approach for improving aerobic composting characteristics and reducing the power consumption and the hot exhaust gas emissions, especially in the cooling maturation stage, which was of great significance for realising the low-cost production of composting at scale and promoting the blossom of the organic fertiliser industry.

12.
Clin Exp Med ; 24(1): 92, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38693353

ABSTRACT

The role of RNA N6-methyladenosine (m6A) modification in immunity is being elucidated. This study aimed to explore the potential association between m6A regulators and the immune microenvironment in IgA nephropathy (IgAN). The expression profiles of 24 m6A regulators in 107 IgAN patients were obtained from the Gene Expression Omnibus (GEO) database. The least absolute shrinkage and selection operator (LASSO) regression and logistic regression analysis were utilized to construct a model for distinguishing IgAN from control samples. Based on the expression levels of m6A regulators, unsupervised clustering was used to identify m6A-induced molecular clusters in IgAN. Gene set enrichment analysis (GSEA) and immunocyte infiltration among different clusters were examined. The gene modules with the highest correlation for each of the three clusters were identified by weighted gene co-expression network analysis (WGCNA). A model containing 10 m6A regulators was developed using LASSO and logistic regression analyses. Three molecular clusters were determined using consensus clustering of 24 m6A regulators. A decrease in the expression level of YTHDF2 in IgAN samples was significantly negatively correlated with an increase in resting natural killer (NK) cell infiltration and was positively correlated with the abundance of M2 macrophage infiltration. The risk scores calculated by the nomogram were significantly higher for cluster-3, and the expression levels of m6A regulators in this cluster were generally low. Immunocyte infiltration and pathway enrichment results for cluster-3 differed significantly from those for the other two clusters. Finally, the expression of YTHDF2 was significantly decreased in IgAN based on immunohistochemical staining. This study demonstrated that m6A methylation regulators play a significant role in the regulation of the immune microenvironment in IgAN. Based on m6A regulator expression patterns, IgAN can be classified into multiple subtypes, which might provide additional insights into novel therapeutic methods for IgAN.


Subject(s)
Adenosine , Adenosine/analogs & derivatives , Glomerulonephritis, IGA , Glomerulonephritis, IGA/genetics , Glomerulonephritis, IGA/immunology , Glomerulonephritis, IGA/pathology , Humans , Adenosine/metabolism , Methylation , Gene Expression Profiling , Female , Gene Regulatory Networks , Male , Gene Expression Regulation , Adult , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , RNA-Binding Proteins/genetics , RNA Methylation
13.
Neurol Sci ; 45(8): 3573-3582, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38772979

ABSTRACT

INTRODUCTION: Identifying coronavirus disease 2019 (COVID-19)-related encephalitis without clear etiological evidence is clinically challenging. The distinctions between this condition and other prevalent encephalitis types remain unknown. Therefore, we aimed to explore the similarities and differences in the clinical characteristics of COVID-19-related encephalitis and other encephalitis types. METHODS: Adult patients with encephalitis admitted to the neurology department at Xuanwu Hospital were enrolled and categorized into the following six groups based on the results of metagenomic next-generation sequencing and autoimmune antibody detection in cerebrospinal fluid (CSF): COVID-19-related encephalitis (n = 36), herpes simplex virus type 1 encephalitis (HSV-1 encephalitis; n = 28), human herpesvirus 3 encephalitis (HHV-3 encephalitis; n = 10), NMDAR-antibody encephalitis (n = 18), LGI1-antibody encephalitis (n = 12), and GABAB-antibody encephalitis (n = 8). RESULTS: The predominant characteristics of COVID-19-related encephalitis include a low incidence of seizures (38.9%), cognitive defects (30.6%), and meningeal irritation signs (8.3%). Compared with HSV-1 and HHV-3 encephalitis, COVID-19-related encephalitis exhibited lower white blood cell count (2.5 count/mm3), protein (32.2 mg/dL), and immunoglobulin M, G, and A levels (0.09, 3.2, and 0.46 mg/dL, respectively) in the CSF tests. Abnormal imaging findings were present in only 36.1% of COVID-19-related encephalitis cases, mostly showing diffuse inflammation scattered in various parts, which differed from HSV-1 encephalitis. Additionally, COVID-19-related encephalitis exhibited significant differences in clinical symptoms and CSF white blood cell counts compared with NMDAR-antibody encephalitis; however, it showed limited differences compared with LGI1-antibody and GABAB-antibody encephalitis. DISCUSSION: COVID-19-related encephalitis and herpes virus or autoimmune encephalitis differ clinically. Symptoms and auxiliary examinations can be used as distinguishing tools.


Subject(s)
COVID-19 , Encephalitis, Herpes Simplex , Encephalitis , Hashimoto Disease , Humans , COVID-19/complications , Female , Male , Middle Aged , Adult , Encephalitis/diagnosis , Encephalitis/cerebrospinal fluid , Encephalitis, Herpes Simplex/cerebrospinal fluid , Encephalitis, Herpes Simplex/diagnosis , Encephalitis, Herpes Simplex/complications , Hashimoto Disease/cerebrospinal fluid , Hashimoto Disease/diagnosis , Aged , Autoantibodies/cerebrospinal fluid , Autoantibodies/blood , Encephalitis, Viral/diagnosis , Encephalitis, Viral/cerebrospinal fluid , SARS-CoV-2 , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/cerebrospinal fluid
14.
J Hazard Mater ; 471: 134294, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38669928

ABSTRACT

Biodegradable plastics promise eco-friendliness, yet their transformation into microplastics (bio-MPs) raises environmental alarms. However, how those bio-MPs affect the greenhouse gases (GHGs) and volatile organic compounds (VOCs) in soil ecosystems remains largely unexplored. Here, we investigated the effects of diverse bio-MPs (PBAT, PBS, and PLA) on GHGs and VOCs emission in typical paddy or upland soils. We monitored the carbon dioxide (CO2) and methane (CH4) fluxes in-situ using the self-developed portable optical gas sensor and analyzed VOC profiles using a proton-transfer reaction mass spectrometer (PTR-MS). Our study has revealed that, despite their biodegradable nature, bio-MPs do not always promote soil GHG emissions as previously thought. Specifically, PBAT and PLA significantly increased CO2 and CH4 emissions up to 1.9-7.5 and 115.9-178.5 fold, respectively, compared to the control group. While PBS exhibited the opposite trend, causing a decrease of up to 39.9% for CO2 and up to 39.9% for CH4. In addition, different types of bio-MPs triggered distinct soil VOC emission patterns. According to the Mann-Whitney U-test and Partial Least Squares Discriminant Analysis (PLS-DA), a recognizable VOC pattern associated with different bio-MPs was revealed. This study claims the necessity of considering polymer-specific responses when assessing the environmental impact of Bio-MPs, and providing insights into their implications for climate change.


Subject(s)
Carbon Dioxide , Methane , Microplastics , Volatile Organic Compounds , Carbon Dioxide/analysis , Volatile Organic Compounds/analysis , Methane/analysis , Microplastics/analysis , Soil/chemistry , Ecosystem , Soil Pollutants/analysis , Greenhouse Gases/analysis , Environmental Monitoring , Biodegradation, Environmental , Air Pollutants/analysis
15.
Ann Hematol ; 103(9): 3627-3637, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38647678

ABSTRACT

Iron contributes to tumor initiation and progression; however, excessive intracellular free Fe2+ can be toxic to cancer cells. Our findings confirmed that multiple myeloma (MM) cells exhibited elevated intracellular iron levels and increased ferritin, a key protein for iron storage, compared with normal cells. Interestingly, Bortezomib (BTZ) was found to trigger ferritin degradation, increase free intracellular Fe2+, and promote ferroptosis in MM cells. Subsequent mechanistic investigation revealed that BTZ effectively increased NCOA4 levels by preventing proteasomal degradation in MM cells. When we knocked down NCOA4 or blocked autophagy using chloroquine, BTZ-induced ferritin degradation and the increase in intracellular free Fe2+ were significantly reduced in MM cells, confirming the role of BTZ in enhancing ferritinophagy. Furthermore, the combination of BTZ with RSL-3, a specific inhibitor of GPX4 and inducer of ferroptosis, synergistically promoted ferroptosis in MM cell lines and increased cell death in both MM cell lines and primary MM cells. The induction of ferroptosis inhibitor liproxstatin-1 successfully counteracted the synergistic effect of BTZ and RSL-3 in MM cells. Altogether, our findings reveal that BTZ elevates intracellular free Fe2+ by enhancing NCOA4-mediated ferritinophagy and synergizes with RSL-3 by increasing ferroptosisin MM cells.


Subject(s)
Bortezomib , Drug Synergism , Ferritins , Ferroptosis , Iron , Multiple Myeloma , Nuclear Receptor Coactivators , Humans , Multiple Myeloma/metabolism , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Nuclear Receptor Coactivators/metabolism , Nuclear Receptor Coactivators/genetics , Bortezomib/pharmacology , Ferritins/metabolism , Ferroptosis/drug effects , Iron/metabolism , Cell Line, Tumor , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Carbolines
16.
Environ Pollut ; 351: 123969, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38615835

ABSTRACT

The issue of cadmium (Cd) contamination in alkaline soils is escalating, necessitating the prompt implementation of effective passivation strategies. Biochar has gained significant attention for its potential in immobilizing heavy metals; however, the suitability of biochar as a remediation material and its micro-scale interaction mechanisms with Cd under alkaline conditions remain unclear. Rape straw (RS) were pyrolyzed at 400 °C (RB400) and 700 °C (RB700) to produce biochar. Adsorption and soil incubation experiments were carried out to assess the feasibility of using rape straw derived biochar pyrolyze at different temperatures and understanding their remediation mechanisms in alkaline environments. The sorption capacity for Cd immobilization was evaluated using sorption isotherms, revealing that RB700 exhibited enhanced Cd sorption performance with a maximum sorption capacity of 119.33 mg g-1 calculated from the Langmuir isotherm equation at pH 8. Cd L3-edge X-ray absorption near-edge structure (XANES) spectroscopy analysis confirmed that the dominant sorption species of Cd were organic Cd in RB400, with CdCO3 precipitation increased to 73.9% in RB700. Solid-state 13C nuclear magnetic resonance (13C-NMR) spectroscopy demonstrated that aromatic and carboxyl C functional groups are involved in the organic sorption of Cd through complexation and Cd2+-π interactions in alkaline solutions. The precipitation of CdCO3 in RB700 may resulted in a more effective passivation effect compared to RB400, leading to a significant 15.54% reduction in the DTPA-Cd content in Cd-contaminated soil. These findings highlight the effective Cd passivation Cd in alkaline environments by rape straw derived biochar, providing new molecular insights into the Cd retention mechanism of biochar. Furthermore, it presents novel ideas for improving remediation approaches for alkaline Cd-contaminated soils.


Subject(s)
Cadmium , Charcoal , Environmental Restoration and Remediation , Soil Pollutants , Soil , Cadmium/chemistry , Charcoal/chemistry , Soil Pollutants/chemistry , Environmental Restoration and Remediation/methods , Adsorption , Soil/chemistry , Hydrogen-Ion Concentration , Brassica rapa/chemistry
17.
Nat Commun ; 15(1): 3425, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653984

ABSTRACT

While the monolayer sheet is well-established as a Mott-insulator with a finite energy gap, the insulating nature of bulk 1T-TaS2 crystals remains ambiguous due to their varying dimensionalities and alterable interlayer coupling. In this study, we present a unique approach to unlock the intertwined two-dimensional Mott-insulator and three-dimensional band-insulator states in bulk 1T-TaS2 crystals by structuring a laddering stack along the out-of-plane direction. Through modulating the interlayer coupling, the insulating nature can be switched between band-insulator and Mott-insulator mechanisms. Our findings demonstrate the duality of insulating nature in 1T-TaS2 crystals. By manipulating the translational degree of freedom in layered crystals, our discovery presents a promising strategy for exploring fascinating physics, independent of their dimensionality, thereby offering a "three-dimensional" control for the era of slidetronics.

18.
Nature ; 627(8002): 67-72, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38448698

ABSTRACT

Ordinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between electrons induce scattering that is quadratic in the deviation of the binding energy from the Fermi level. A long-standing puzzle is that certain materials do not fit this 'Fermi liquid' description. A common feature is strong interactions between electrons relative to their kinetic energies. One route to this regime is special lattices to reduce the electron kinetic energies. Twisted bilayer graphene1-4 is an example, and trihexagonal tiling lattices (triangular 'kagome'), with all corner sites removed on a 2 × 2 superlattice, can also host narrow electron bands5 for which interaction effects would be enhanced. Here we describe spectroscopy revealing non-Fermi-liquid behaviour for the ferromagnetic kagome metal Fe3Sn2 (ref. 6). We discover three C3-symmetric electron pockets at the Brillouin zone centre, two of which are expected from density functional theory. The third and most sharply defined band emerges at low temperatures and binding energies by means of fractionalization of one of the other two, most likely on the account of enhanced electron-electron interactions owing to a flat band predicted to lie just above the Fermi level. Our discovery opens the topic of how such many-body physics involving flat bands7,8 could differ depending on whether they arise from lattice geometry or from strongly localized atomic orbitals9,10.

19.
Mol Genet Genomic Med ; 12(3): e2398, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38444259

ABSTRACT

BACKGROUND: Okur-Chung neurodevelopmental syndrome (OCNDS) is a rare autosomal dominant disorder caused by pathogenic variants in CSNK2A1. It is characterized by intellectual disability, developmental delay, and multisystemic abnormalities. METHODS: We performed the whole-exome sequencing for a patient in a Chinese family. The co-segregation study using the Sanger sequencing method was performed among family members. Reverse transcription and quantitative real-time polymerase chain reaction were carried out using total RNA from blood samples of the proband and wild-type control subjects. A review of patients with OCNDS harboring CSNK2A1 pathogenic variants was conducted through a comprehensive search of the PubMed database. RESULTS: We identified a novel CSNK2A1 frameshift variant p.Tyr323Leufs*16 in a Chinese family. The proband, a 31-year-old female, presented with abnormal eating habits, recurrent seizures, language impairment, and intellectual disability. Her mother exhibited postnatal hernias, splenomegaly, and a predisposition to infections, but showed no significant developmental impairments or intellectual disability. Genetic studies revealed the presence of this variant in CSNK2A1 in both the proband and her mother. Transcription analysis revealed this variant may lead to nonsense-mediated mRNA decay, suggesting haploinsufficiency as a potential disease mechanism. We reviewed 47 previously reported OCNDS cases and discovered that individuals carrying CSNK2A1 null variants may exhibit a diminished frequency of symptoms linked to language deficits, dysmorphic facial features, or intellectual disability, consequently presenting an overall milder phenotype when compared to those with missense variants. CONCLUSION: We report a novel frameshift variant, p.Tyr323Leufs*16, in an OCNDS family with a generally mild phenotype. This study may broaden the spectrum of clinical presentations associated with OCNDS and contribute novel insights into the genotype-phenotype correlation of this condition.


Subject(s)
Intellectual Disability , Adult , Female , Humans , Asian People , Databases, Factual , Genotype , Intellectual Disability/genetics , Phenotype
20.
Int J Surg ; 110(6): 3848-3878, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38502850

ABSTRACT

AIM: Computer-aided drug design (CADD) is a drug design technique for computing ligand-receptor interactions and is involved in various stages of drug development. To better grasp the frontiers and hotspots of CADD, we conducted a review analysis through bibliometrics. METHODS: A systematic review of studies published between 2000 and 20 July 2023 was conducted following the PRISMA guidelines. Literature on CADD was selected from the Web of Science Core Collection. General information, publications, output trends, countries/regions, institutions, journals, keywords, and influential authors were visually analyzed using software such as Excel, VOSviewer, RStudio, and CiteSpace. RESULTS: A total of 2031 publications were included. These publications primarily originated from 99 countries or regions led by the U.S. and China. Among the contributors, MacKerell AD had the highest number of articles and the greatest influence. The Journal of Medicinal Chemistry was the most cited journal, whereas the Journal of Chemical Information and Modeling had the highest number of publications. CONCLUSIONS: Influential authors in the field were identified. Current research shows active collaboration between countries, institutions, and companies. CADD technologies such as homology modeling, pharmacophore modeling, quantitative conformational relationships, molecular docking, molecular dynamics simulation, binding free energy prediction, and high-throughput virtual screening can effectively improve the efficiency of new drug discovery. Artificial intelligence-assisted drug design and screening based on CADD represent key topics that will influence future development. Furthermore, this paper will be helpful in better understanding the frontiers and hotspots of CADD.


Subject(s)
Bibliometrics , Computer-Aided Design , Drug Design , Humans , Molecular Docking Simulation
SELECTION OF CITATIONS
SEARCH DETAIL