Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 810
Filter
1.
J Neuroimmune Pharmacol ; 19(1): 19, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753217

ABSTRACT

Ischemic stroke is the leading cause of death and disability worldwide. Nevertheless, there still lacks the effective therapies for ischemic stroke. Microglia are resident macrophages of the central nervous system (CNS) and can initiate immune responses and monitor the microenvironment. Microglia are activated and polarize into proinflammatory or anti­inflammatory phenotype in response to various brain injuries, including ischemic stroke. Proinflammatory microglia could generate immunomodulatory mediators, containing cytokines and chemokines, these mediators are closely associated with secondary brain damage following ischemic stroke. On the contrary, anti-inflammatory microglia facilitate recovery following stroke. Regulating the activation and the function of microglia is crucial in exploring the novel treatments for ischemic stroke patients. Accumulating studies have revealed that RhoA/ROCK pathway and NF-κB are famous modulators in the process of microglia activation and polarization. Inhibiting these key modulators can promote the polarization of microglia to anti-inflammatory phenotype. In this review, we aimed to provide a comprehensive overview on the role of RhoA/ROCK pathway and NF-κB in the microglia activation and polarization, reveal the relationship between RhoA/ROCK pathway and NF-κB in the pathological process of ischemic stroke. In addition, we likewise discussed the drug modulators targeting microglia polarization.


Subject(s)
Ischemic Stroke , Microglia , NF-kappa B , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Microglia/metabolism , NF-kappa B/metabolism , Humans , rho-Associated Kinases/metabolism , Animals , rhoA GTP-Binding Protein/metabolism , Ischemic Stroke/metabolism , Ischemic Stroke/immunology , Ischemic Stroke/pathology , Signal Transduction/physiology , Cell Polarity/physiology , Cell Polarity/drug effects
2.
Orthop Surg ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38784971

ABSTRACT

OBJECTIVE: AO/OTA 31-A3.3 intertrochanteric fracture is the most unstable type of intertrochanteric fracture, with a high rate of postoperative complications and implant failure. We have designed a new intramedullary fixation, proximal femoral totally bionic nail (PFTBN), for the treatment of A3.3 intertrochanteric fracture. To test its biomechanical performance, we adopted the method of finite element analysis and compared PFTBN with proximal femoral nail antirotation (PFNA) and proximal femoral bionic nail (PFBN, another internal fixation we previously designed for stable intertrochanteric fractures). METHODS: Mimics, 3-matic, ANSYS, and other software were used to construct a highly precise and realistic 3D digital model of the human femur. An AO/OTA 31-A3.3 intertrochanteric fracture of the femur was constructed according to the 2018 classification of AO/OTA, and then assembled with PFNA, PFBN and PFTBN models, respectively. The stress distribution and displacement distribution of the three groups of constructs were tested under three times the body weight load and one-foot standing configuration. RESULTS: In terms of maximum stress and maximum displacement, the PFTBN group outperforms the PFBN group, and the PFBN group, in turn, surpasses the PFNA group. The maximum stress of PFTBN group was 408.5 Mpa, that of PFBN group was 525.4 MPa, and that of PFNA group was 764.3 Mpa. Comparatively, the maximum stress in the PFTBN group was reduced by 46.6% when contrasted with the PFNA group. Moreover, the stress dispersion within the PFTBN group was more evenly distributed than PFNA group. Regarding maximum displacement, the PFTBN group displayed the least displacement at 5.15 mm, followed by the PFBN group at 7.32 mm, and the PFNA group at 7.73 mm. Notably, the maximum displacement of the PFTBN group was 33.4% less than that observed in the PFNA group. Additionally, the relative displacement between the fragment and implant at the tip of pressure screw or helical blade was 0.22 mm in the PFTBN group, 0.34 mm in the PFBN group, and substantially higher 0.51 mm in the PFNA group. CONCLUSION: The "lever-reconstruction-balance" theory provides a new perspective for us to understand the mechanical conduction of the proximal femur. Compared with PFNA, in treating A3.3 intertrochanteric fractures PFTBN can better reconstruct the function of lateral wall, restore physiological mechanical conduction, increase postoperative stability, and finally reduce the risk of postoperative cut-out and implant failure. It might be a better alternative for the treatment of A3.3 intertrochanteric fracture.

3.
J Adhes Dent ; 26(1): 147-170, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38785223

ABSTRACT

PURPOSE: To systematically review in-vitro studies that evaluated the influence of erbium laser pretreatment on dentin shear bond strength (SBS) and bond failure modes. MATERIALS AND METHODS: Electronic databases (PubMed, Cochrane Central, Embase, and Web of Science) were searched. Only in-vitro studies involving erbium laser irradiation of the dentin surface and SBS testing of the bonded resin block were included. The three common modes of bond failure (1. adhesive, 2. cohesive, and 3. mixed) were observed and analyzed. The network meta-analysis (NMA) was performed by Stata 15.0 software, the risk of bias was evaluated, and the certainty of the evidence was assessed by the Confidence in Network Meta-analysis (CINeMA). RESULTS: Forty studies with nine pretreatments (1. blank group: BL; 2. phosphoric acid etch-and-rinse: ER; 3. self-etch adhesive: SE; 4. Er:YAG laser: EL; 5. Er,Cr:YSGG laser: ECL; 6. ER+EL; 7. ER+ECL; 8. SE+EL; 9. SE+ECL) were included in this analysis. The NMA of SBS showed that ER+EL [SMD = 0.32, 95% CI (0.11, 0.98)] had the highest SBS next to ER, especially when using one of the 3M ESPE adhesives, followed by EL, ECL, SE and SE+EL. The Ivoclar Vivadent adhesives significantly increased the SBS of the ECL [SMD = 0.37, 95% CI (0.16,0.90)] and was higher than ER+EL [SMD = 0.25,95% CI (0.07,0.85)]. Finally, the surface under the cumulative ranking curve (SUCRA) value indicated that ER+EL (SUCRA = 71.0%) and EL (SUCRA = 62.9%) were the best treatments for enhancing dentin SBS besides ER. ER+EL (SUCRA = 85.3%), ER (SUCRA = 83.7%) and ER (SUCRA = 84.3%) had the highest probability of occurring in adhesive, cohesive and mixed failure modes, respectively. CONCLUSION: Er:YAG and Er,Cr:YSGG lasers improved dentin SBS compared to the blank group, especially when the acid etch-and-rinse pretreatment was combined with Er:YAG laser. Shear bond strength and failure mode do not appear to be directly related.


Subject(s)
Dental Bonding , Dentin , Lasers, Solid-State , Shear Strength , Dental Bonding/methods , Lasers, Solid-State/therapeutic use , Humans , Network Meta-Analysis , Dentin-Bonding Agents/chemistry , Acid Etching, Dental , Dental Stress Analysis
4.
Acta Pharm Sin B ; 14(5): 2097-2118, 2024 May.
Article in English | MEDLINE | ID: mdl-38799640

ABSTRACT

Choline acetyltransferase (ChAT)-positive neurons in neural stem cell (NSC) niches can evoke adult neurogenesis (AN) and restore impaired brain function after injury, such as acute ischemic stroke (AIS). However, the relevant mechanism by which ChAT+ neurons develop in NSC niches is poorly understood. Our RNA-seq analysis revealed that dimethylarginine dimethylaminohydrolase 1 (DDAH1), a hydrolase for asymmetric NG,NG-dimethylarginine (ADMA), regulated genes responsible for the synthesis and transportation of acetylcholine (ACh) (Chat, Slc5a7 and Slc18a3) after stroke insult. The dual-luciferase reporter assay further suggested that DDAH1 controlled the activity of ChAT, possibly through hypoxia-inducible factor 1α (HIF-1α). KC7F2, an inhibitor of HIF-1α, abolished DDAH1-induced ChAT expression and suppressed neurogenesis. As expected, DDAH1 was clinically elevated in the blood of AIS patients and was positively correlated with AIS severity. By comparing the results among Ddah1 general knockout (KO) mice, transgenic (TG) mice and wild-type (WT) mice, we discovered that DDAH1 upregulated the proliferation and neural differentiation of NSCs in the subgranular zone (SGZ) under ischemic insult. As a result, DDAH1 may promote cognitive and motor function recovery against stroke impairment, while these neuroprotective effects are dramatically suppressed by NSC conditional knockout of Ddah1 in mice.

5.
Food Chem X ; 22: 101485, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38817980

ABSTRACT

Tetracyclines (TCs) are the most commonly antimicrobial agents that used in livestock production worldwide. It is important to supervise tetracyclines residues in food for environmental monitoring and food safety. In this study, a novel, label-free chemiluminescence (CL) assay without antibody was established. Fe3O4 NPs could facilitate the CL interaction between luminol and H2O2. Interestingly, TCs could enhance the catalytic ability of Fe3O4 NPs and result in a further amplification of the CL intensity. The CL intensity varied linearly with the concentration of tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC), and ranging from 10-2400, 10-2800, and 5-2100 nmol/L, respectively; The limits of detection were 4 nmol/L for TC, 6 nmol/L for OTC, and 2 nmol/L for CTC. This CL strategy was applied successfully in testing three TCs residues in milk, eggs and honey samples with more sensitive results, which provided an alternative strategy for monitoring the correct use of TCs.

6.
Adv Sci (Weinh) ; : e2400479, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696643

ABSTRACT

Electronic skins are expected to replicate a human-like tactile sense, which significantly detects surface information, including geometry, material, and temperature. Although most texture features can be sensed in the horizontal direction, the lack of effective approaches for detecting vertical properties limits the development of artificial skin based on tactile sensors. In this study, an all-printed finger-inspired tactile sensor array is developed to realize the 3D detection and reconstruction of microscale structures. A beam structure with a suspended multilayer membrane is proposed, and a tactile sensor array of 12 units arranged in a dual-column layout is developed. This architecture enables the tactile sensor array to obtain comprehensive geometric information of micro-textures, including 3D morphology and clearance characteristics, and optimizes the 3D reconstruction patterns by self-calibration. Moreover, an innovative screen-printing technology incorporating multilayer printing and sacrificial-layer techniques is adopted to print the entire device. In additon, a Braille recognition system utilizing this tactile sensor array is developed to interpret Shakespeare's quotes printed in Grade 2 Braille. The abovementioned demonstrations reveal an attractive future vision for endowing bioinspired robots with the unique capability of touching and feeling the microscale real world and reconstructing it in the cyber world.

7.
Talanta ; 276: 126206, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38749163

ABSTRACT

As an essential chemical intermediate, catechol (CC) residues may have adverse effects on human health. Herein, an effective and facile photoelectrochemical sensor platform based on MgIn2S4/CdWO4 composite is constructed for monitoring CC. MgIn2S4 increases light absorption range and activity, while CdWO4 enhances photoelectronic stability, and the type-II heterojunction formed can significantly enhance photocurrent response. Due to the autoxidation process, CC is converted into oligomeric products, which increase the spatial site resistance and attenuate the overall photocurrent response. It is worth noting that the cauliflower-like structure of MgIn2S4 can provide a large specific surface area, and the presence of Mg2+ promotes autoxidation, thus providing a suitable condition for detecting CC. Under optimal conditions, the MgIn2S4/CdWO4/GCE photoelectrochemical sensor has a prominent linear relationship in the range of CC concentration from 2 nM to 7 µM, with a limit of detection of 0.27 nM. With satisfactory selectivity, excellent stability, and remarkable reproducibility, this sensor provides a crucial reference value for effectively and rapidly detecting pollutants in environmental water samples.

8.
Adv Sci (Weinh) ; : e2401210, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751126

ABSTRACT

The molecular structures of surfactants play a pivotal role in influencing their self-assembly behaviors. In this work, using simulations and experiments, an unconventional hierarchically layered structure in the didodecyldimethylammonium bromide (DDAB)/water binary system: lamellae-in-lamellae is revealed, a new self-assembly structure in surfactant system. This self-assembly structure refers to a lamellar structure with a shorter periodic length (inner lamellae) embedded in a lamellar phase with a longer periodic length (outer lamellae). The normal vectors of these two lamellar regions orient perpendicularly. In addition, it is observed that this lamellar-in-lamellar phase disappears when the two tails of the cationic surfactants become longer. The formation of the lamellar-in-lamellar architecture arises from multiple interacting factors. The key element is that the short tails of the DDAB surfactants enhance hydrophilicity and rigidity, which facilitates the formation of the inner lamellae. Moreover, the lateral monolayer of the inner lamellae provides shielding from the water and prompts the formation of the outer lamellae. These findings indicate that molecular structures and flexibility can profoundly redirect the hierarchical self-assembly behaviors in amphiphilic systems. More broadly, this work presents a new strategy to deliberately program hierarchical nanomaterials by designing specific surfactant molecules to act as tunable scaffolds, reactors, and carriers.

9.
Psychogeriatrics ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769596

ABSTRACT

BACKGROUND: It is reported that reduced physical activity and malnutrition may trigger pneumonia, and the utilisation of the geriatric nutritional risk index (GNRI) upon admission to long-term nursing care can enable the implementation of accurate and timely rehabilitation and nutritional support, which may, in turn, minimise pneumonia incidence. However, to date, there is no reported association between GNRI and pneumonia among stable schizophrenic patients. METHODS: This is a retrospective investigation. We enrolled 434 hospitalised subjects aged ≥50 years, who were diagnosed with stable schizophrenia between January 2017 and June 2022. Baseline nutritional status information during the stable stage of schizophrenia was evaluated using body mass index, serum albumin, and GNRI. In addition, pneumonia-based information, including diagnosis and treatment, was retrospectively obtained within 1 year. To examine the potential association between nutrition indicators and pneumonia risk among stable schizophrenia patients, we employed a logistic regression analysis. RESULTS: The pneumonia incidence among all stable schizophrenia patients was 10.14%, and there were no statistically significant difference between sexes (male vs. female, 10.63% vs. 9.44%, P = 0.687). Based on the univariate analysis of nutrition indicators and pneumonia, female patients exhibited a strong correlation between serum albumin and pneumonia (P = 0.022). Furthermore, we adjusted for potential influencing factors of pneumonia infection, and confirmed that only serum albumin was linked to pneumonia risk in female stable schizophrenia patients (odds ratio = 0.854, 95% CI: 0.749-0.975, P = 0.02). CONCLUSIONS: Based on our analysis, serum albumin was strongly correlated with pneumonia risk in female stable schizophrenia patients.

10.
Technol Health Care ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38759051

ABSTRACT

BACKGROUND: In recent years, hyperuricemia and acute gouty arthritis have become increasingly common, posing a serious threat to public health. Current treatments primarily involve Western medicines with associated toxic side effects. OBJECTIVE: This study aims to investigate the therapeutic effects of total flavones from Prunus tomentosa (PTTF) on a rat model of gout and explore the mechanism of PTTF's anti-gout action through the TLR4/NF-κB signaling pathway. METHODS: We measured serum uric acid (UA), creatinine (Cr), blood urea nitrogen (BUN), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and interleukin-6 (IL-6) levels using an enzyme-linked immunosorbent assay (ELISA). Histopathological changes were observed using HE staining, and the expression levels of relevant proteins were detected through Western blotting. RESULTS: After PTTF treatment, all indicators improved significantly. PTTF reduced blood levels of UA, Cr, BUN, IL-1ß, IL-6, and TNF-α, and decreased ankle swelling. CONCLUSIONS: PTTF may have a therapeutic effect on animal models of hyperuricemia and acute gouty arthritis by reducing serum UA levels, improving ankle swelling, and inhibiting inflammation. The primary mechanism involves the regulation of the TLR4/NF-κB signaling pathway to alleviate inflammation. Further research is needed to explore deeper mechanisms.

11.
Medicine (Baltimore) ; 103(20): e38097, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758892

ABSTRACT

BACKGROUND: Endometriosis (EMT) is a common disease in reproductive-age woman and Crohn disease (CD) is a chronic inflammatory disorder in gastrointestinal tract. Previous studies reported that patients with EMT had an increased risk of CD. However, the linkage between EMT and CD remains unclear. In this study, we aimed to investigate the potential molecular mechanism of EMT and CD. METHODS: The microarray data of EMT and CD were downloaded from Gene Expression Omnibus. Common genes of EMT and CD were obtained to perform the Gene Ontology and Kyoto Encyclopedia of Gene Genomes enrichments. The protein-protein interaction network was constructed by Cytoscape software and the hub genes were identified by CytoHubba plug-in. Finally we predicted the transcription factors (TFs) of hub genes and constructed a TFs-hub genes regulation network. RESULTS: A total of 50 common genes were identified. Kyoto Encyclopedia of Gene Genomes enrichment showed that the common genes mainly enriched in MAPK pathway, VEGF pathway, Wnt pathway, TGF-beta pathway, and Ras pathway. Fifteen hub genes were collected from the protein-protein interaction network, including FMOD, FRZB, CPE, SST, ISG15, EFEMP1, KDR, ADRA2A, FZD7, AQP1, IGFBP5, NAMPT, PLUA, FGF9, and FHL2. Among them, FGF9, FZD7, IGFBP5, KDR, and NAMPT were both validated in the other 2 datasets. Finally TFs-hub genes regulation network were constructed. CONCLUSION: Our findings firstly revealed the linkage between EMT and CD, including inflammation, angiogenesis, immune regulation, and cell behaviors, which may lead to the risk of CD in EMT. FGF9, FZD7, IGFBP5, KDR, and NAMPT may closely relate to the linkage.


Subject(s)
Computational Biology , Crohn Disease , Endometriosis , Protein Interaction Maps , Humans , Female , Crohn Disease/genetics , Computational Biology/methods , Endometriosis/genetics , Protein Interaction Maps/genetics , Gene Regulatory Networks , Transcription Factors/genetics , Gene Ontology , Gene Expression Profiling
12.
Adv Healthc Mater ; : e2400362, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768110

ABSTRACT

The diminishing effectiveness of existing aminoglycoside antibiotics (AGs) compels scientists to seek new approaches to enhance the sensitivity of current AGs. Despite ongoing efforts, currently available approaches remain restricted. Herein, a novel strategy involving the rational construction of an aggregation-induced-emission luminogen (AIEgen) is introduced to significantly enhance Gram-positive bacteria's susceptibility to AGs. The application of this approach involves the simple addition of AIEgens to bacteria followed by a 5 min light irradiation. Under light exposure, AIEgens efficiently generate reactive oxygen species (ROS), elevating intrabacterial ROS levels to a nonlethal threshold. Post treatment, the bacteria swiftly enter a hypersensitive state, resulting in a 21.9-fold, 15.5-fold, or 7.2-fold increase in susceptibility to three AGs: kanamycin, gentamycin, and neomycin, respectively. Remarkably, this approach is specific to AGs, and the induced hypersensitivity displays unparalleled longevity and heritability. Further in vivo studies confirm a 7.0-fold enhanced bactericidal ability of AGs against Gram-positive bacteria through this novel approach. This research not only broadens the potential applications of AIEgens but also introduces a novel avenue to bolster the effectiveness of AGs in combating bacterial infections.

13.
BMC Cardiovasc Disord ; 24(1): 267, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773388

ABSTRACT

BACKGROUND: The effect of nonalcoholic fatty liver disease (NAFLD) on major adverse cardiovascular events (MACEs) can be influenced by the degree of coronary artery stenosis. However, the association between the severity of NAFLD and MACEs in patients who underwent coronary computed tomography angiography (CCTA) is unclear. METHODS: A total of 341 NAFLD patients who underwent CCTA were enrolled. The severity of NAFLD was divided into mild NAFLD and moderate-severe NAFLD by abdominal CT results. The degree of coronary artery stenosis was evaluated by using Coronary Artery Disease Reporting and Data System (CAD-RADS) category. Cox regression analysis and Kaplan-Meier analysis were used to assess poor prognosis. RESULTS: During the follow-up period, 45 of 341 NAFLD patients (13.20%) who underwent CCTA occurred MACEs. The severity of NAFLD (hazard ratio [HR] = 2.95[1.54-5.66]; p = 0.001) and CAD-RADS categories 3-5 (HR = 16.31[6.34-41.92]; p < 0.001) were independent risk factors for MACEs. The Kaplan-Meier analysis showed that moderate to severe NAFLD patients had a worsen prognosis than mild NAFLD patients (log-rank p < 0.001). Moreover, the combined receiver operating characteristic curve of the severity of NAFLD and CAD-RADS category showed a good predicting performance for the risk of MACEs, with an area under the curve of 0.849 (95% CI = 0.786-0.911). CONCLUSION: The severity of NAFLD was independent risk factor for MACEs in patients with obstructive CAD, having CAD-RADS 3-5 categories on CCTA.


Subject(s)
Computed Tomography Angiography , Coronary Angiography , Coronary Artery Disease , Coronary Stenosis , Non-alcoholic Fatty Liver Disease , Predictive Value of Tests , Severity of Illness Index , Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/complications , Male , Female , Middle Aged , Risk Factors , Risk Assessment , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/mortality , Coronary Artery Disease/complications , Aged , Prognosis , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/mortality , Retrospective Studies , Time Factors
14.
Sensors (Basel) ; 24(10)2024 May 12.
Article in English | MEDLINE | ID: mdl-38793935

ABSTRACT

During the braking process of electric vehicles, both the regenerative braking system (RBS) and anti-lock braking system (ABS) modulate the hydraulic braking force, leading to control conflict that impacts the effectiveness and real-time capability of coordinated control. Aiming to enhance the coordinated control effectiveness of RBS and ABS within the electro-hydraulic composite braking system, this paper proposes a coordinated control strategy based on explicit model predictive control (eMPC-CCS). Initially, a comprehensive braking control framework is established, combining offline adaptive control law generation, online optimized control law application, and state compensation to effectively coordinate braking force through the electro-hydraulic system. During offline processing, eMPC generates a real-time-oriented state feedback control law based on real-world micro trip segments, improving the adaptiveness of the braking strategy across different driving conditions. In the online implementation, the developed three-dimensional eMPC control laws, corresponding to current driving conditions, are invoked, thereby enhancing the potential for real-time braking strategy implementation. Moreover, the state error compensator is integrated into eMPC-CCS, yielding a state gain matrix that optimizes the vehicle braking status and ensures robustness across diverse braking conditions. Lastly, simulation evaluation and hardware-in-the-loop (HIL) testing manifest that the proposed eMPC-CCS effectively coordinates the regenerative and hydraulic braking systems, outperforming other CCSs in terms of braking energy recovery and real-time capability.

15.
Sensors (Basel) ; 24(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794003

ABSTRACT

With the rapid development of the intelligent driving technology, achieving accurate path planning for unmanned vehicles has become increasingly crucial. However, path planning algorithms face challenges when dealing with complex and ever-changing road conditions. In this paper, aiming at improving the accuracy and robustness of the generated path, a global programming algorithm based on optimization is proposed, while maintaining the efficiency of the traditional A* algorithm. Firstly, turning penalty function and obstacle raster coefficient are integrated into the search cost function to increase the adaptability and directionality of the search path to the map. Secondly, an efficient search strategy is proposed to solve the problem that trajectories will pass through sparse obstacles while reducing spatial complexity. Thirdly, a redundant node elimination strategy based on discrete smoothing optimization effectively reduces the total length of control points and paths, and greatly reduces the difficulty of subsequent trajectory optimization. Finally, the simulation results, based on real map rasterization, highlight the advanced performance of the path planning and the comparison among the baselines and the proposed strategy showcases that the optimized A* algorithm significantly enhances the security and rationality of the planned path. Notably, it reduces the number of traversed nodes by 84%, the total turning angle by 39%, and shortens the overall path length to a certain extent.

16.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38617299

ABSTRACT

Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanisms for the individual steps of the BFB cycle warrants further investigation. Here, we demonstrated that a nuclease-dead Cas9 (dCas9) coupled with a telomere-specific single-guide RNA (sgTelo) can be used to model the BFB cycle. First, we showed that targeting dCas9 to telomeres using sgTelo impeded DNA replication at telomeres and induced a pronounced increase of replication stress and DNA damage. Using Single-Molecule Telomere Assay via Optical Mapping (SMTA-OM), we investigated the genome-wide features of telomeres in the dCas9/sgTelo cells and observed a dramatic increase of chromosome end fusions, including fusion/ITS+ and fusion/ITS-.Consistently, we also observed an increase in the formation of dicentric chromosomes, anaphase bridges, and intercellular telomeric chromosome bridges (ITCBs). Utilizing the dCas9/sgTelo system, we uncovered many novel molecular and structural features of the ITCB and demonstrated that multiple DNA repair pathways are implicated in the formation of ITCBs. Our studies shed new light on the molecular mechanisms of the BFB cycle, which will advance our understanding of tumorigenesis, tumor evolution, and drug resistance.

17.
J Colloid Interface Sci ; 665: 1043-1053, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38579387

ABSTRACT

Na3V2(PO4)2F3 (NVPF), recognized for its Na superionic conductor architecture, emerges as a promising candidate among polyanion-type cathodes for sodium ion batteries (SIBs). However, its adoption in practical applications faces obstacles due to its inherently low electronic conductivity. To address this challenge, we employ a binary co-doped strategy to design Na3.3K0.2V1.5Mg0.5(PO4)2F3 cathode with nitrogen-doped carbon (NC) coating layer. This configuration enhances electronic conductivity and reduces diffusion barriers for sodium ion (Na+). The strategy of incorporating nitrogen-doped carbon coating not only facilitates the formation of a porous structure but also introduces additional defects and active sites. Such modifications accelerate the reaction kinetics and augment electrolyte interaction through an expanded specific surface area, thus streamlining the electrochemical process. Concurrently, strategic heteroatom substitution leads to a more efficient engagement of Na+ in the electrochemical activities, thereby bolstering the cathode's structural integrity. The vanadium fluorophosphate Na3.3K0.2V1.5Mg0.5(PO4)2F3@NC exhibits an electrochemical performance, including a high discharge specific capacity of 124.3 mA h g-1 at 0.1C, a long lifespan of 1000 cycles with a capacity retention of 93.1 % at 10C, and a rate property of 73.2 mA h g-1 at 20C. This research provides a method for preparing binary doped NVPF for energy storage electrochemistry.

18.
Opt Lett ; 49(8): 2053-2056, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621074

ABSTRACT

Plasmonic nanosensors and the dynamic control of light fields are of the utmost significance in the field of micro- and nano-optics. Here, our study successfully demonstrates a plasmonic nanosensor in a compact coupled resonator system and obtains the pressure-induced transparency phenomenon for the first time to our knowledge. The proposed structure consists of a groove and slot cavity coupled in the metal-insulator-metal waveguide, whose mechanical and optical characteristics are investigated in detail using the finite element method. Simulation results show that we construct a quantitative relationship among the resonator deformation quantity, the applied pressure variation, and the resonant wavelength offset by combining the mechanical and optical properties of the proposed system. The physical features contribute to highly efficient plasmonic nanosensors for refractive index and optical pressure sensing with sensitivity of 1800 nm/RIU and 7.4 nm/MPa, respectively. Furthermore, the light waves are coupled to each other in the resonators, which are detuned due to the presence of pressure, resulting in the pressure-induced transparency phenomenon. It is noteworthy to emphasize that, unlike previously published works, our numerical results take structural deformation-induced changes in optical properties into account, making them trustworthy and practical. The proposed structure introduces a novel, to the best of our knowledge, approach for the dynamic control of light fields and has special properties that can be utilized for the realization of various integrated components.

19.
Cancer Imaging ; 24(1): 49, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38584289

ABSTRACT

BACKGROUND: The Vesical Imaging-Reporting and Data System (VI-RADS) has demonstrated effectiveness in predicting muscle invasion in bladder cancer before treatment. The urgent need currently is to evaluate the muscle invasion status after neoadjuvant chemotherapy (NAC) for bladder cancer. This study aims to ascertain the accuracy of VI-RADS in detecting muscle invasion post-NAC treatment and assess its diagnostic performance across readers with varying experience levels. METHODS: In this retrospective study, patients with muscle-invasive bladder cancer who underwent magnetic resonance imaging (MRI) after NAC from September 2015 to September 2018 were included. VI-RADS scores were independently assessed by five radiologists, consisting of three experienced in bladder MRI and two inexperienced radiologists. Comparison of VI-RADS scores was made with postoperative histopathological diagnosis. Receiver operating characteristic curve analysis (ROC) was used for evaluating diagnostic performance, calculating sensitivity, specificity, and area under ROC (AUC)). Interobserver agreement was assessed using the weighted kappa statistic. RESULTS: The final analysis included 46 patients (mean age: 61 years ± 9 [standard deviation]; age range: 39-70 years; 42 men). The pooled AUC for predicting muscle invasion was 0.945 (95% confidence interval (CI): 0.893-0.977) for experienced readers, and 0.910 (95% CI: 0.831-0.959) for inexperienced readers, and 0.932 (95% CI: 0.892-0.961) for all readers. At an optimal cut-off value ≥ 4, pooled sensitivity and specificity were 74.1% (range: 66.0-80.9%) and 94.1% (range: 88.6-97.7%) for experienced readers, and 63.9% (range: 59.6-68.1%) and 86.4% (range: 84.1-88.6%) for inexperienced readers. Interobserver agreement ranged from substantial to excellent between all readers (k = 0.79-0.92). CONCLUSIONS: VI-RADS accurately assesses muscle invasion in bladder cancer patients after NAC and exhibits good diagnostic performance across readers with different experience levels.


Subject(s)
Urinary Bladder Neoplasms , Urinary Bladder , Male , Humans , Adult , Middle Aged , Aged , Urinary Bladder/diagnostic imaging , Urinary Bladder/pathology , Neoadjuvant Therapy , Retrospective Studies , Magnetic Resonance Imaging/methods , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology
20.
Biomolecules ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672500

ABSTRACT

Neuroma, a pathological response to peripheral nerve injury, refers to the abnormal growth of nerve tissue characterized by disorganized axonal proliferation. Commonly occurring after nerve injuries, surgeries, or amputations, this condition leads to the formation of painful nodular structures. Traditional treatment options include surgical excision and pharmacological management, aiming to alleviate symptoms. However, these approaches often offer temporary relief without addressing the underlying regenerative challenges, necessitating the exploration of advanced strategies such as tissue-engineered materials for more comprehensive and effective solutions. In this study, we discussed the etiology, molecular mechanisms, and histological morphology of traumatic neuromas after peripheral nerve injury. Subsequently, we summarized and analyzed current nonsurgical and surgical treatment options, along with their advantages and disadvantages. Additionally, we emphasized recent advancements in treating traumatic neuromas with tissue-engineered material strategies. By integrating biomaterials, growth factors, cell-based approaches, and electrical stimulation, tissue engineering offers a comprehensive solution surpassing mere symptomatic relief, striving for the structural and functional restoration of damaged nerves. In conclusion, the utilization of tissue-engineered materials has the potential to significantly reduce the risk of neuroma recurrence after surgical treatment.


Subject(s)
Biocompatible Materials , Neuroma , Peripheral Nerve Injuries , Tissue Engineering , Tissue Engineering/methods , Humans , Neuroma/therapy , Peripheral Nerve Injuries/therapy , Biocompatible Materials/therapeutic use , Biocompatible Materials/chemistry , Animals , Nerve Regeneration , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...